Pairwise balanced designs with odd block sizes exceeding five
暂无分享,去创建一个
[1] Ronald D. Baker. An Elliptic Semiplane , 1978, J. Comb. Theory, Ser. A.
[2] Douglas R. Stinson,et al. A general construction for group-divisible designs , 1981, Discret. Math..
[3] Richard M. Wilson,et al. Concerning the number of mutually orthogonal latin squares , 1974, Discret. Math..
[4] Richard M. Wilson,et al. An Existence Theory for Pairwise Balanced Designs I. Composition Theorems and Morphisms , 1972, J. Comb. Theory, Ser. A.
[5] Richard M. Wilson,et al. Constructions and Uses of Pairwise Balanced Designs , 1975 .
[6] Richard M. Wilson,et al. An Existence Theory for Pairwise Balanced Designs II. The Structure of PBD-Closed Sets and the Existence Conjectures , 1972, J. Comb. Theory, Ser. A.
[7] Douglas R. Stinson,et al. Pairwise balanced designs with block sizes 6t + 1 , 1987, Graphs Comb..
[8] Ronald C. Mullin,et al. A Generalization of the Singular Direct Product with Applications Skew Room Squares , 1980, J. Comb. Theory, Ser. A.
[9] Andries E. Brouwer. A Series of Separable Designs with Application to Pairwise Orthogonal Latin Squares , 1980, Eur. J. Comb..
[10] Ronald C. Mullin,et al. On the existence of frames , 1981, Discret. Math..
[11] W. D. Wallis,et al. The existence of Room squares , 1975 .
[12] Richard M. Wilson,et al. An Existence Theory for Pairwise Balanced Designs, III: Proof of the Existence Conjectures , 1975, J. Comb. Theory, Ser. A.
[13] Douglas R. Stinson,et al. The Spectrum of Room Cubes , 1981, Eur. J. Comb..
[14] A. E. Brouwer,et al. stichting mathematisch centrum , 2006 .
[15] Joseph Douglas Horton. Sub-Latin Squares and Incomplete Orthogonal Arrays , 1974, J. Comb. Theory, Ser. A.
[16] Douglas R. Stinson,et al. The spectrum of skew Room squares , 1981, Journal of the Australian Mathematical Society.
[17] Richard M. Wilson,et al. An Existence Theory for Pairwise Balanced Designs II. The Structure of PBD-Closed Sets and the Existence Conjectures , 1972, J. Comb. Theory A.
[18] Andries E. Brouwer,et al. The number of mutually orthogonal latin squares; a table up to order 10000 , 1979 .