Pairwise balanced designs with odd block sizes exceeding five

Abstract In this paper we construct pairwise balanced designs (PBDs) having block sizes which are odd prime powers exceeding 5. Such a PBD contains an odd number of points. We show that this condition is sufficient when the number of points is at least 2129, with at most 103 possible exceptions below this value. This is accomplished, in part, by some interesting new recursive constructions for PBDs. Also, we give several applications to the construction of other types of combinatorial designs, such as Room squares, skew Room squares, Room cubes, separable orthogonal arrays, and perpendicular arrays. We prove the new result that there is a perpendicular array PA( n , 7) for all odd n ⩾2129.

[1]  Ronald D. Baker An Elliptic Semiplane , 1978, J. Comb. Theory, Ser. A.

[2]  Douglas R. Stinson,et al.  A general construction for group-divisible designs , 1981, Discret. Math..

[3]  Richard M. Wilson,et al.  Concerning the number of mutually orthogonal latin squares , 1974, Discret. Math..

[4]  Richard M. Wilson,et al.  An Existence Theory for Pairwise Balanced Designs I. Composition Theorems and Morphisms , 1972, J. Comb. Theory, Ser. A.

[5]  Richard M. Wilson,et al.  Constructions and Uses of Pairwise Balanced Designs , 1975 .

[6]  Richard M. Wilson,et al.  An Existence Theory for Pairwise Balanced Designs II. The Structure of PBD-Closed Sets and the Existence Conjectures , 1972, J. Comb. Theory, Ser. A.

[7]  Douglas R. Stinson,et al.  Pairwise balanced designs with block sizes 6t + 1 , 1987, Graphs Comb..

[8]  Ronald C. Mullin,et al.  A Generalization of the Singular Direct Product with Applications Skew Room Squares , 1980, J. Comb. Theory, Ser. A.

[9]  Andries E. Brouwer A Series of Separable Designs with Application to Pairwise Orthogonal Latin Squares , 1980, Eur. J. Comb..

[10]  Ronald C. Mullin,et al.  On the existence of frames , 1981, Discret. Math..

[11]  W. D. Wallis,et al.  The existence of Room squares , 1975 .

[12]  Richard M. Wilson,et al.  An Existence Theory for Pairwise Balanced Designs, III: Proof of the Existence Conjectures , 1975, J. Comb. Theory, Ser. A.

[13]  Douglas R. Stinson,et al.  The Spectrum of Room Cubes , 1981, Eur. J. Comb..

[14]  A. E. Brouwer,et al.  stichting mathematisch centrum , 2006 .

[15]  Joseph Douglas Horton Sub-Latin Squares and Incomplete Orthogonal Arrays , 1974, J. Comb. Theory, Ser. A.

[16]  Douglas R. Stinson,et al.  The spectrum of skew Room squares , 1981, Journal of the Australian Mathematical Society.

[17]  Richard M. Wilson,et al.  An Existence Theory for Pairwise Balanced Designs II. The Structure of PBD-Closed Sets and the Existence Conjectures , 1972, J. Comb. Theory A.

[18]  Andries E. Brouwer,et al.  The number of mutually orthogonal latin squares; a table up to order 10000 , 1979 .