The quadratic assignment problem is easy for Robinsonian matrices with Toeplitz structure

We present a new polynomially solvable case of the Quadratic Assignment Problem in Koopmans-Beckman form QAP(A;B), by showing that the identity permutation is optimal when A and B are respectively a Robinson similarity and dissimilarity matrix and one of A or B is a Toeplitz matrix. A Robinson (dis)similarity matrix is a symmetric matrix whose entries (increase) decrease monotonically along rows and columns when moving away from the diagonal, and such matrices arise in the classical seriation problem.

[1]  Gerhard J. Woeginger,et al.  The Quadratic Assignment Problem with a Monotone Anti-Monge and a Symmetric Toeplitz Matrix: Easy and Hard Cases , 1996, IPCO.

[2]  T. Koopmans,et al.  Assignment Problems and the Location of Economic Activities , 1957 .

[3]  JOSEP DÍAZ,et al.  A survey of graph layout problems , 2002, CSUR.

[4]  Victor Chepoi,et al.  Seriation in the Presence of Errors: NP-Hardness of l∞ -Fitting Robinson Structures to Dissimilarity Matrices , 2009, J. Classif..

[5]  Gerhard J. Woeginger,et al.  A solvable case of the quadratic assignment problem , 1998, Oper. Res. Lett..

[6]  A. George,et al.  An Analysis of Spectral Envelope Reduction via Quadratic Assignment Problems , 1997, SIAM J. Matrix Anal. Appl..

[7]  Fionn Murtagh,et al.  Theme Articles on Classification and Geometric Data Analysis , 2014, J. Classif..

[8]  Dominique Fortin,et al.  An Optimal Algorithm To Recognize Robinsonian Dissimilarities , 2014, Journal of Classification.

[9]  Innar Liiv,et al.  Seriation and matrix reordering methods: An historical overview , 2010, Stat. Anal. Data Min..

[10]  Rainer E. Burkard,et al.  A unified approach to simple special cases of extremal permutation problems , 1998 .

[11]  João Meidanis,et al.  On the Consecutive Ones Property , 1998, Discret. Appl. Math..

[12]  Alexandre d'Aspremont,et al.  SerialRank: Spectral Ranking using Seriation , 2014, NIPS.

[13]  Bruce Hendrickson,et al.  A Spectral Algorithm for Seriation and the Consecutive Ones Problem , 1999, SIAM J. Comput..

[14]  Mauro Dell'Amico,et al.  Assignment Problems , 1998, IFIP Congress: Fundamentals - Foundations of Computer Science.

[15]  H. D. Simon,et al.  A spectral algorithm for envelope reduction of sparse matrices , 1993, Supercomputing '93. Proceedings.

[16]  Teofilo F. Gonzalez,et al.  P-Complete Approximation Problems , 1976, J. ACM.

[17]  Kenneth Kalmanson Edgeconvex Circuits and the Traveling Salesman Problem , 1975, Canadian Journal of Mathematics.

[18]  Panos M. Pardalos,et al.  Quadratic Assignment Problem , 1997, Encyclopedia of Optimization.

[19]  Mauro Dell'Amico,et al.  8. Quadratic Assignment Problems: Algorithms , 2009 .

[20]  Gerhard J. Woeginger,et al.  Well-solvable cases of the QAP with block-structured matrices , 2014, Discret. Appl. Math..

[21]  Alexandre d'Aspremont,et al.  Convex Relaxations for Permutation Problems , 2013, SIAM J. Matrix Anal. Appl..

[22]  D. R. Fulkerson,et al.  Incidence matrices and interval graphs , 1965 .

[23]  W. S. Robinson A Method for Chronologically Ordering Archaeological Deposits , 1951, American Antiquity.

[24]  Victor Chepoi,et al.  Recognition of Robinsonian dissimilarities , 1997 .

[25]  Gerd Finke,et al.  Well Solvable Cases of the Quadratic Assignment Problem with Monotone and Bimonotone Matrices , 2006, J. Math. Model. Algorithms.

[26]  Chris H. Q. Ding,et al.  Linearized cluster assignment via spectral ordering , 2004, ICML.

[27]  Monique Laurent,et al.  A Lex-BFS-based recognition algorithm for Robinsonian matrices , 2015, Discret. Appl. Math..

[28]  D. Kendall Incidence matrices, interval graphs and seriation in archeology. , 1969 .

[29]  Morgan Seston Dissimilarités de Robinson : algorithmes de reconnaissance et d'approximation , 2008 .

[30]  Michael A. Trick,et al.  The Structure of Circular Decomposable Metrics , 1996, ESA.