A Petri Net Interpretation of Open Reconfigurable Systems

We present a Petri net interpretation of the pi-graphs-a graphical variant of the picalculus where recursion and replication are replaced by iteration. The concise and syntax-driven translation can be used to reason in Petri net terms about open reconfigurable systems. We demonstrate that the pi-graphs and their translated high-level Petri nets agree at the semantic level. In consequence, existing results on pi-graphs naturally extend to the translated Petri nets, most notably a guarantee of finiteness by construction.

[1]  Roberto Gorrieri,et al.  On the Relationship between π-Calculus and Finite Place/Transition Petri Nets , 2009, CONCUR.

[2]  Maciej Koutny,et al.  Petri Net Algebra , 2001, Monographs in Theoretical Computer Science An EATCS Series.

[3]  Marco Pistore,et al.  History-Dependent Automata: An Introduction , 2005, SFM.

[4]  Robin Milner,et al.  Communicating and mobile systems - the Pi-calculus , 1999 .

[5]  Maciej Koutny,et al.  A compositional Petri net translation of general π-calculus terms , 2008, Formal Aspects of Computing.

[6]  Corrado Priami,et al.  Causality for Mobile Processes , 1995, ICALP.

[7]  R. Gorrieri A Petri Net Semantics for -calculus ? , 1995 .

[8]  Davide Sangiorgi,et al.  Communicating and Mobile Systems: the π-calculus, , 2000 .

[9]  Raymond R. Devillers,et al.  A Decidable Characterization of a Graphical Pi-calculus with Iterators , 2010, INFINITY.

[10]  Karen A. Frenkel,et al.  An interview with Robin Milner , 1993, CACM.

[11]  Davide Sangiorgi,et al.  The Pi-Calculus - a theory of mobile processes , 2001 .

[12]  Roberto Gorrieri,et al.  A Petri Net Semantics for pi-Calculus , 1995, CONCUR.

[13]  Maurizio Gabbrielli,et al.  Comparing Recursion, Replication, and Iteration in Process Calculi , 2004, ICALP.

[14]  Marco Bernardo,et al.  Formal Methods for Mobile Computing, 5th International School on Formal Methods for the Design of Computer, Communication, and Software Systems, SFM-Moby 2005, Bertinoro, Italy, April 26-30, 2005, Advanced Lectures , 2005, SFM.

[15]  Frédéric Peschanski,et al.  Modelling and Verifying Mobile Systems Using pi-Graphs , 2009, SOFSEM.

[16]  Roberto Gorrieri,et al.  Distributed semantics for the pi-calculus based on Petri nets with inhibitor arcs , 2009, J. Log. Algebraic Methods Program..