Evolving digital circuits using multi expression programming

Multi expression programming (MEP) is a genetic programming (GP) variant that uses linear chromosomes for solution encoding. A unique MEP feature is its ability of encoding multiple solutions of a problem in a single chromosome. These solutions are handled in the same time complexity as other techniques that encode a single solution in a chromosome. In this paper MEP is used for evolving digital circuits.

[1]  Alfred V. Aho,et al.  Compilers: Principles, Techniques, and Tools , 1986, Addison-Wesley series in computer science / World student series edition.

[2]  Enrique Alba,et al.  Comparing different serial and parallel heuristics to design combinational logic circuits , 2003, NASA/DoD Conference on Evolvable Hardware, 2003. Proceedings..

[3]  Julian Francis Miller,et al.  Cartesian genetic programming , 2000, GECCO '10.

[4]  Mihai Oltean,et al.  Evolving Evolutionary Algorithms Using Multi Expression Programming , 2003, ECAL.

[5]  Sean R Eddy,et al.  What is dynamic programming? , 2004, Nature Biotechnology.

[6]  Una-May O'Reilly,et al.  Genetic Programming II: Automatic Discovery of Reusable Programs. , 1994, Artificial Life.

[7]  Vu Duong,et al.  Silicon validation of evolution-designed circuits , 2003, NASA/DoD Conference on Evolvable Hardware, 2003. Proceedings..

[8]  Julian Francis Miller,et al.  Aspects of Digital Evolution: Evolvability and Architecture , 1998, PPSN.

[9]  Julian Francis Miller,et al.  Principles in the Evolutionary Design of Digital Circuits—Part II , 2000, Genetic Programming and Evolvable Machines.

[10]  D. Wolpert,et al.  No Free Lunch Theorems for Search , 1995 .

[11]  Mihai Oltean Solving Even-Parity Problems using Multi Expression Programming , 2003 .

[12]  Cândida Ferreira,et al.  Gene Expression Programming: A New Adaptive Algorithm for Solving Problems , 2001, Complex Syst..

[13]  J. Miller An empirical study of the efficiency of learning boolean functions using a Cartesian Genetic Programming approach , 1999 .

[14]  Michael O'Neill,et al.  Grammatical Evolution: Evolving Programs for an Arbitrary Language , 1998, EuroGP.

[15]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[16]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.

[17]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[18]  M. Oltean,et al.  Multi Expression Programming , 2021 .