ZnS Nanostructure Arrays: A Developing Material Star

Semiconductor nanostructure arrays are of great scientific and technical interest because of the strong non-linear and electro-optic effects that occur due to carrier confinement in three dimensions. The use of such nanostructure arrays with tailored geometry, array density, and length-diameter-ratio as building blocks are expected to play a crucial role in future nanoscale devices. With the unique properties of a direct wide-bandgap semiconductor, such as the presence of polar surfaces, excellent transport properties, good thermal stability, and high electronic mobility, ZnS nanostructure arrays has been a developing material star. The research on ZnS nanostructure arrays has seen remarkable progress over the last five years due to the unique properties and important potential applications of nanostructure arrays, which are summarized here. Firstly, a survey of various methods to the synthesis of ZnS nanostructure arrays will be introduced. Next recent efforts on exploiting the unique properties and applications of ZnS nanostructure arrays are discussed. Potential future directions of this research field are also highlighted.

[1]  Catalano,et al.  Room temperature lasing at blue wavelengths in gallium nitride microcavities , 1999, Science.

[2]  Y. Bando,et al.  Crystal orientation-ordered ZnS nanobelt quasi-arrays and their enhanced field-emission. , 2007, Chemical communications.

[3]  Y. Bando,et al.  Electrical Transport and High‐Performance Photoconductivity in Individual ZrS2 Nanobelts , 2010, Advanced materials.

[4]  Shui-Tong Lee,et al.  ZnS Nanowires with Wurtzite Polytype Modulated Structure , 2003 .

[5]  Xijin Xu,et al.  Fabrication and photoluminescence properties of highly ordered ZnS nanowire arrays embedded in anodic alumina membrane , 2008 .

[6]  Nathan S Lewis,et al.  Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. , 2010, Nature materials.

[7]  Xinsheng Peng,et al.  Catalytic growth and photoluminescence properties of semiconductor single-crystal ZnS nanowires , 2002 .

[8]  Jie Yin,et al.  Large-scale synthesis of tube-like ZnS and cable-like ZnS–ZnO arrays: Preparation through the sulfuration conversion from ZnO arrays via a simple chemical solution route , 2005 .

[9]  Miroslaw Batentschuk,et al.  Silica‐Coated InP/ZnS Nanocrystals as Converter Material in White LEDs , 2008 .

[10]  T. Shimizu,et al.  Bottom‐Imprint Method for VSS Growth of Epitaxial Silicon Nanowire Arrays with an Aluminium Catalyst , 2009 .

[11]  Xijin Xu,et al.  Preparation and formation mechanism of ZnS semiconductor nanowires made by the electrochemical deposition method , 2006 .

[12]  J. Zou,et al.  Zinc sulfide nanowire arrays on silicon wafers for field emitters , 2010, Nanotechnology.

[13]  Jinhui Song,et al.  ZnO-ZnS heterojunction and ZnS nanowire arrays for electricity generation. , 2009, ACS nano.

[14]  Thierry Pauporté,et al.  Low‐Voltage UV‐Electroluminescence from ZnO‐Nanowire Array/p‐GaN Light‐Emitting Diodes , 2010, Advanced materials.

[15]  Ming Fang,et al.  Nanomaterials in pollution trace detection and environmental improvement , 2010 .

[16]  S. Nakamura,et al.  InGaN-Based Multi-Quantum-Well-Structure Laser Diodes , 1996 .

[17]  Hideki Masuda,et al.  Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask , 1996 .

[18]  Yang Jiang,et al.  Homoepitaxial Growth and Lasing Properties of ZnS Nanowire and Nanoribbon Arrays , 2006 .

[19]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[20]  C. Lieber,et al.  Growth of Metal Carbide Nanotubes and Nanorods , 1996 .

[21]  J. Yao,et al.  Synthesis of ordered ZnS nanotubes by MOCVD-template method , 2006 .

[22]  Y. Bando,et al.  Solvothermal Synthesis, Cathodoluminescence, and Field‐Emission Properties of Pure and N‐Doped ZnO Nanobullets , 2009 .

[23]  Zhong Lin Wang,et al.  Growth of anisotropic one-dimensional ZnS nanostructures , 2006 .

[24]  A. Javey,et al.  Toward the Development of Printable Nanowire Electronics and Sensors , 2009 .

[25]  W. Cai,et al.  Fabrication and field-emission performance of zinc sulfide nanobelt arrays , 2007 .

[26]  Wen Yu,et al.  Synthesis of ZnS nanorod arrays by an aqua-solution hydrothermal process on pulse-plating Zn nanocrystallines , 2009 .

[27]  Liang Li,et al.  Nanotube Arrays in Porous Anodic Alumina Membranes , 2009 .

[28]  S. Fan,et al.  Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube-Confined Reaction , 1997 .

[29]  Youfan Hu,et al.  Supersensitive, Fast‐Response Nanowire Sensors by Using Schottky Contacts , 2010, Advanced materials.

[30]  Ningsheng Xu,et al.  Novel cold cathode materials and applications , 2005 .

[31]  Y. Bando,et al.  Characterization, cathodoluminescence and field-emission properties of morphology-tunable CdS micro/nanostructures , 2009, 2010 3rd International Nanoelectronics Conference (INEC).

[32]  D. Golberg,et al.  One-dimensional ZnS-based Hetero-, Core/shell and Hierarchical Nanostructures , 2009 .

[33]  Y. Oaki,et al.  Room‐Temperature Aqueous Synthesis of Highly Luminescent BaWO4–Polymer Nanohybrids and Their Spontaneous Conversion to Hexagonal WO3 Nanosheets , 2006 .

[34]  Peidong Yang,et al.  Semiconductor nanowire: what's next? , 2010, Nano letters.

[35]  Lide Zhang,et al.  Temperature-dependent photoluminescence from elemental sulfur species on ZnS nanobelts , 2006 .

[36]  Sven Barth,et al.  Synthesis and applications of one-dimensional semiconductors , 2010 .

[37]  Robert T. Downs,et al.  Morphology-tuned wurtzite-type ZnS nanobelts , 2005, Nature materials.

[38]  Y. Bando,et al.  Shape-and size-controlled growth of ZnS nanostructures , 2007 .

[39]  G. Meng,et al.  Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties , 2000 .

[40]  Xiaohong Li,et al.  Controllable growth of electrodeposited single-crystal nanowire arrays: The examples of metal Ni and semiconductor ZnS , 2007 .

[41]  Y. Bando,et al.  Oriented Assemblies of ZnS One‐Dimensional Nanostructures , 2004 .

[42]  Y. Bando,et al.  One-dimensional CdS nanostructures: synthesis, properties, and applications. , 2010, Nanoscale.

[43]  Y. Bando,et al.  Synthesis, structure, and multiply enhanced field-emission properties of branched ZnS nanotube-in nanowire core-shell heterostructures. , 2008, ACS nano.

[44]  S. Mcginnis,et al.  Novel template-based semiconductor nanostructures and their applications , 2000 .

[45]  Lide Zhang,et al.  Density-Controlled Homoepitaxial Growth of ZnS Nanowire Arrays , 2009 .

[46]  T. Kurz,et al.  Formation of Zn(1-x)MnxS nanowires within mesoporous silica of different pore sizes. , 2004, Journal of the American Chemical Society.

[47]  S. Chaudhuri,et al.  Fabrication and Luminescent Properties of c-Axis Oriented ZnO−ZnS Core−Shell and ZnS Nanorod Arrays by Sulfidation of Aligned ZnO Nanorod Arrays , 2007 .

[48]  W. Cai,et al.  Well-aligned zinc sulfide nanobelt arrays : Excellent field emitters , 2006 .

[49]  Shui-Tong Lee,et al.  Hydrogen‐Assisted Thermal Evaporation Synthesis of ZnS Nanoribbons on a Large Scale , 2003 .

[50]  Shui-Tong Lee,et al.  Heteroepitaxial growth and optical properties of ZnS nanowire arrays on CdS nanoribbons , 2007 .

[51]  Zhongqiu Wang,et al.  Nanobelts, Nanocombs, and Nanowindmills of Wurtzite ZnS , 2003 .

[52]  Jun Chen,et al.  Field emission display device structure based on double-gate driving principle for achieving high brightness using a variety of field emission nanoemitters , 2007 .

[53]  H. Zeng,et al.  Self-assembled ZnS nanowire arrays: synthesis, in situ Cu doping and field emission , 2010, Nanotechnology.

[54]  Y. Bando,et al.  Synthesis of boron nitride nanotubes from carbon nanotubes by a substitution reaction , 1998 .

[55]  A. Govindaraj,et al.  Unipolar assembly of zinc oxide rods manifesting polarity-driven collective luminescence , 2010, Proceedings of the National Academy of Sciences.

[56]  Yining Huang,et al.  Synthetic Routes to the Encapsulation of II–VI Semiconductors in Mesoporous Hosts , 2005 .

[57]  Yanhong Luo,et al.  Towards Optimization of Materials for Dye‐Sensitized Solar Cells , 2009 .

[58]  P. Chu,et al.  Synthesis and Growth Mechanism of Quasialigned Ultrafine ZnS Nanowire Arrays Fabricated Directly on Zinc Foils , 2009 .

[59]  Zhong Lin Wang,et al.  Power generation with laterally packaged piezoelectric fine wires. , 2009, Nature nanotechnology.

[60]  Lai-fei Cheng,et al.  Effect of complexing agents on properties of electroless Ni–P deposits , 2008 .

[61]  Chongwu Zhou,et al.  Heteroepitaxial growth of orientation-ordered ZnS nanowire arrays , 2008 .

[62]  Amanda S. Barnard,et al.  Safe, stable and effective nanotechnology: phase mapping of ZnS nanoparticles , 2010 .

[63]  S. Chaudhuri,et al.  ZnS Nanowire Arrays: Synthesis, Optical and Field Emission Properties , 2008 .

[64]  Jeunghee Park,et al.  Vertical Epitaxial Co5Ge7 Nanowire and Nanobelt Arrays on a Thin Graphitic Layer for Flexible Field Emission Displays , 2009, Advanced materials.

[65]  Charles M. Lieber,et al.  Synthesis and characterization of carbide nanorods , 1995, Nature.

[66]  Y. Bando,et al.  An Efficient Way to Assemble ZnS Nanobelts as Ultraviolet‐Light Sensors with Enhanced Photocurrent and Stability , 2010 .

[67]  Matt Law,et al.  Nanoribbon Waveguides for Subwavelength Photonics Integration , 2004, Science.

[68]  Dmitri Golberg,et al.  Inorganic semiconductor nanostructures and their field-emission applications , 2008 .

[69]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[70]  D. Shen,et al.  Highly aligned ZnS nanorods grown by plasma-assisted metalorganic chemical vapor deposition , 2005 .

[71]  Tammy Y. Olson,et al.  Structural and Optical Properties and Emerging Applications of Metal Nanomaterials , 2009 .

[72]  Y. Suematsu Advances in Semiconductor Lasers , 1985 .

[73]  C. Ye,et al.  Synthesis, Growth Mechanism, and Applications of Zinc Oxide Nanomaterials , 2009 .

[74]  Xu,et al.  Spatial confinement of laser light in active random media , 2000, Physical review letters.

[75]  M. Naughton,et al.  Aligned Ultralong ZnO Nanobelts and Their Enhanced Field Emission , 2006 .

[76]  Guozhong Cao,et al.  ZnO Nanostructures for Dye‐Sensitized Solar Cells , 2009 .

[77]  Chenglin Yan,et al.  Conversion of ZnO nanorod arrays into ZnO/ZnS nanocable and ZnS nanotube arrays via an in situ chemistry strategy. , 2006, The journal of physical chemistry. B.

[78]  Y. Bando,et al.  Multiangular Branched ZnS Nanostructures with Needle-Shaped Tips: Potential Luminescent and Field-Emitter Nanomaterial , 2008 .

[79]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[80]  Min Han,et al.  Template-based CVD synthesis of ZnS nanotube arrays , 2005 .

[81]  Wen Yu,et al.  ZnS nanorod arrays synthesized by an aqua-solution hydrothermal process upon pulse-plating Zn nanocrystallines , 2009 .

[82]  Lide Zhang,et al.  Origin of the green photoluminescence from zinc sulfide nanobelts , 2004 .

[83]  Y. Bando,et al.  Single‐Crystalline CdS Nanobelts for Excellent Field‐Emitters and Ultrahigh Quantum‐Efficiency Photodetectors , 2010, Advanced materials.

[84]  B. Liu,et al.  Low-temperature synthesis of wurtzite ZnS single-crystal nanowire arrays , 2007 .

[85]  Junqing Hu,et al.  Synthesis of crystalline silicon tubular nanostructures with ZnS nanowires as removable templates. , 2004, Angewandte Chemie.

[86]  E. Bakkers,et al.  Epitaxial Growth of III-V Nanowires on Group IV Substrates , 2007 .

[87]  Takashi Sekiguchi,et al.  Single‐Crystalline ZnS Nanobelts as Ultraviolet‐Light Sensors , 2009 .

[88]  J. Zou,et al.  Field Emission and Cathodoluminescence of ZnS Hexagonal Pyramids of Zinc Blende Structured Single Crystals , 2009 .

[89]  Y. Bando,et al.  Heterostructures and superlattices in one-dimensional nanoscale semiconductors , 2009 .

[90]  W. Cai,et al.  Different ZnO Nanostructures Fabricated by a Seed-Layer Assisted Electrochemical Route and Their Photoluminescence and Field Emission Properties , 2007 .

[91]  Runwei Wang,et al.  Template synthesis of boron nitride nanotubes in mesoporous silica SBA-15 , 2005 .

[92]  Liang Shi,et al.  Shape-Selective Synthesis and Optical Properties of Highly Ordered One-Dimensional ZnS Nanostructures , 2009 .

[93]  Haoshen Zhou,et al.  Centimeter‐Long V2O5 Nanowires: From Synthesis to Field‐Emission, Electrochemical, Electrical Transport, and Photoconductive Properties , 2010, Advanced materials.

[94]  X. Fang,et al.  Zinc oxide nanostructures: morphology derivation and evolution. , 2005, The journal of physical chemistry. B.

[95]  Benjamin Gilbert,et al.  Extracellular Proteins Limit the Dispersal of Biogenic Nanoparticles , 2007, Science.

[96]  Wenzhuo Wu,et al.  Wafer-scale high-throughput ordered growth of vertically aligned ZnO nanowire arrays. , 2010, Nano letters.

[97]  Michael C. McAlpine,et al.  Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. , 2007, Nature materials.

[98]  C. Zhi,et al.  Ultrafine ZnS Nanobelts as Field Emitters , 2007 .

[99]  Zhong Lin Wang,et al.  Rectangular Porous ZnO–ZnS Nanocables and ZnS Nanotubes , 2002 .

[100]  Woo Y. Lee,et al.  Template-assisted large-scale ordered arrays of ZnO pillars for optical and piezoelectric applications. , 2006, Small.

[101]  Z. Key One-Dimensional (1D) ZnS Nanomaterials and Nanostructures , 2009 .

[102]  Fredrickson,et al.  Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores , 1998, Science.

[103]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[104]  G. Shen,et al.  High-symmetry ZnS hepta- and tetrapods composed of assembled ZnS nanowire arrays , 2007 .

[105]  L. Luo,et al.  Coaxial Metal Nano‐/Microcables with Isolating Sheath: Synthetic Methodology and Their Application as Interconnects , 2010, Advanced materials.

[106]  Hirofumi Kan,et al.  A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode , 2008 .

[107]  W. Wang,et al.  Nanostructures for Thermoelectric Applications: Synthesis, Growth Mechanism, and Property Studies , 2010, Advanced materials.

[108]  Peidong Yang,et al.  Semiconductor nanowires for energy conversion , 2010, 2010 3rd International Nanoelectronics Conference (INEC).

[109]  Y. Qian,et al.  Solvothermal/hydrothermal route to semiconductor nanowires , 2006 .

[110]  Tianyou Zhai,et al.  ZnO and ZnS Nanostructures: Ultraviolet-Light Emitters, Lasers, and Sensors , 2009 .

[111]  Masahiro Yoshimura,et al.  Shape and Phase Control of ZnS Nanocrystals: Template Fabrication of Wurtzite ZnS Single‐Crystal Nanosheets and ZnO Flake‐like Dendrites from a Lamellar Molecular Precursor ZnS·(NH2CH2CH2NH2)0.5 , 2002 .

[112]  Matteo Ferroni,et al.  Quasi-one dimensional metal oxide semiconductors: Preparation, characterization and application as chemical sensors , 2009 .

[113]  William S. Rees,et al.  True Blue Inorganic Optoelectronic Devices , 2000 .

[114]  Shui-Tong Lee,et al.  Lasing in ZnS nanowires grown on anodic aluminum oxide templates , 2004 .

[115]  Xiaosheng Fang,et al.  Temperature‐Controlled Catalytic Growth of ZnS Nanostructures by the Evaporation of ZnS Nanopowders , 2005 .

[116]  Heon-Jin Choi,et al.  Single-crystal gallium nitride nanotubes , 2003, Nature.

[117]  Zhong Lin Wang,et al.  Crystal orientation-ordered ZnS nanowire bundles. , 2004, Journal of the American Chemical Society.

[118]  Yitai Qian,et al.  High‐Performance Blue/Ultraviolet‐Light‐Sensitive ZnSe‐Nanobelt Photodetectors , 2009, Advanced materials.

[119]  Peidong Yang,et al.  Inorganic Semiconductor Nanowires , 2002 .

[120]  Y. Qian,et al.  Simultaneous In Situ Formation of ZnS Nanowires in a Liquid Crystal Template by γ-Irradiation , 2001 .

[121]  Liang Li,et al.  Conversion of a Bi nanowire array to an array of Bi-Bi2O3 core-shell nanowires and Bi2O3 nanotubes. , 2006, Small.

[122]  Y. Bando,et al.  Spontaneous growth and luminescence of zinc sulfide nanobelts , 2003 .

[123]  D. Zhao,et al.  Ordered Nanowire Arrays of Metal Sulfides Templated by Mesoporous Silica SBA-15 via a Simple Impregnation Reaction , 2003 .

[124]  Joshua E. Goldberger,et al.  SEMICONDUCTOR NANOWIRES AND NANOTUBES , 2004 .

[125]  Ming-Yen Lu,et al.  Direct Conversion of Single‐Layer SnO Nanoplates to Multi‐Layer SnO2 Nanoplates with Enhanced Ethanol Sensing Properties , 2009 .