Determination of buffering capacity of rat myocardium during ischemia.

[1]  K Uğurbil,et al.  Measurement of an individual rate constant in the presence of multiple exchanges: application to myocardial creatine kinase reaction. , 1986, Biochemistry.

[2]  J. R. Neely,et al.  Role of Glycolytic Products in Damage to Ischemic Myocardium: Dissociation of Adenosine Triphosphate Levels and Recovery of Function of Reperfused Ischemic Hearts , 1984, Circulation research.

[3]  I. Campbell,et al.  1H NMR measurements of enzyme-catalyzed 15N-label exchange , 1984 .

[4]  A. From,et al.  High resolution proton NMR studies of perfused rat hearts , 1984, FEBS letters.

[5]  P. J Hors,et al.  A new method for water suppression in the proton NMR spectra of aqueous solutions , 1983 .

[6]  P. W. Hochachka,et al.  Protons and anaerobiosis. , 1983, Science.

[7]  D. Gadian,et al.  A 31P-NMR saturation transfer study of the regulation of creatine kinase in the rat heart. , 1982, Biochimica et biophysica acta.

[8]  M. Weisfeldt,et al.  Intracellular acidosis and contractility in the normal and ischemic heart as examined by 31P NMR. , 1982, Journal of molecular and cellular cardiology.

[9]  P. D. de Tombe,et al.  Simultaneous determination of myocardial adenine nucleotides and creatine phosphate by high-performance liquid chromatography. , 1982, Journal of chromatography.

[10]  S. Williams,et al.  The effects of insulin on myocardial metabolism and acidosis in normoxia and ischaemia. A 31P-NMR study. , 1982, Biochimica et biophysica acta.

[11]  P. Serruys,et al.  Hypoxanthine production by ischemic heart demonstrated by high pressure liquid chromatography of blood purine nucleosides and oxypurines. , 1981, Clinica chimica acta; international journal of clinical chemistry.

[12]  G K Radda,et al.  Studies of acidosis in the ischaemic heart by phosphorus nuclear magnetic resonance. , 1979, The Biochemical journal.

[13]  H A Krebs,et al.  Cytosolic phosphorylation potential. , 1979, The Journal of biological chemistry.

[14]  W. Gevers Generation of protons by metabolic processes other than glycolysis in muscle cells: a critical view. , 1979 .

[15]  D. I. Hoult,et al.  The NMR receiver: A description and analysis of design , 1978 .

[16]  W. Gevers Generation of protons by metabolic processes in heart cells. , 1977, Journal of molecular and cellular cardiology.

[17]  R. Thomas,et al.  Direct measurement of the intracellular pH of mammalian cardiac muscle. , 1976, The Journal of physiology.

[18]  I. Hassinen,et al.  Respiratory control in isolated perfused rat heart. Role of the equilibrium relations between the mitochondrial electron carriers and the adenylate system. , 1975, Biochimica et biophysica acta.

[19]  E. Brown,et al.  Mechanisms of cardiac muscle adjustment to hypercapnia. , 1973, Respiration physiology.

[20]  R. B. Moon,et al.  Determination of intracellular pH by 31P magnetic resonance. , 1973, The Journal of biological chemistry.

[21]  J. Piiper,et al.  Determination of intracellular buffering properties in rat diaphragm muscle. , 1972, The American journal of physiology.

[22]  E. Sonnenblick,et al.  Lactate and pyruvate kinetics in isolated perfused rat hearts. , 1969, The American journal of physiology.

[23]  R. Alberty Standard Gibbs free energy, enthalpy, and entropy changes as a function of pH and pMg for several reactions involving adenosine phosphates. , 1969, The Journal of biological chemistry.

[24]  H. Krebs,et al.  Untersuchungen uber die Harnstoffbildung im Tierkörper , 1932 .