Distributed methods for solving the security-constrained optimal power flow problem

The optimal power flow is the problem of determining the most efficient, low-cost and reliable operation of a power system by dispatching the available electricity generation resources to the load on the system. Unlike the classical optimal power flow problem, the security-constrained optimal power flow (SCOPF) problem takes into account both the pre-contingency (base-case) constraints and post-contingency constraints. In the literature, the problem is formulated as a large-scale nonconvex nonlinear programming. We propose two decomposition algorithms based on the Benders cut and the alternating direction method of multipliers for solving this problem. Our algorithms often generate a solution, whose objective function value is smaller than conventional approaches.

[1]  K. R. Padiyar,et al.  ENERGY FUNCTION ANALYSIS FOR POWER SYSTEM STABILITY , 1990 .

[2]  J. Arroyo,et al.  Umbrella contingencies in security-constrained optimal power flow , 2005 .

[3]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[4]  Allen J. Wood,et al.  Power Generation, Operation, and Control , 1984 .

[5]  D. Ernst,et al.  Contingency Filtering Techniques for Preventive Security-Constrained Optimal Power Flow , 2007, IEEE Transactions on Power Systems.

[6]  Nicolas Chbat,et al.  Discrete Time Control Problems Using MATLAB , 2002 .

[7]  A. Monticelli,et al.  Security-Constrained Optimal Power Flow with Post-Contingency Corrective Rescheduling , 1987, IEEE Transactions on Power Systems.

[8]  B. H. Kim,et al.  A comparison of distributed optimal power flow algorithms , 2000 .

[9]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[10]  M. Hestenes Multiplier and gradient methods , 1969 .

[11]  J. E. Rooda,et al.  An augmented Lagrangian relaxation for analytical target cascading using the alternating direction method of multipliers , 2006 .

[12]  J.D. McCalley,et al.  Decomposed SCOPF for Improving Efficiency , 2009, IEEE Transactions on Power Systems.

[13]  A. M. Geoffrion Generalized Benders decomposition , 1972 .

[14]  A.G. Bakirtzis,et al.  A decentralized solution to the Security Constrained DC-OPF problem of multi-area power systems , 2005, 2005 IEEE Russia Power Tech.

[15]  Zuyi Li,et al.  Market Operations in Electric Power Systems : Forecasting, Scheduling, and Risk Management , 2002 .

[16]  Ernie Esser,et al.  Applications of Lagrangian-Based Alternating Direction Methods and Connections to Split Bregman , 2009 .

[17]  M. J. D. Powell,et al.  A method for nonlinear constraints in minimization problems , 1969 .

[18]  B. Stott,et al.  Further developments in LP-based optimal power flow , 1990 .

[19]  Mohammad Shahidehpour,et al.  Market operations in electric power systems , 2002 .

[20]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[21]  José M. Bioucas-Dias,et al.  Fast Image Recovery Using Variable Splitting and Constrained Optimization , 2009, IEEE Transactions on Image Processing.

[22]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[23]  M. Pavella,et al.  A unified approach to transient stability contingency filtering, ranking and assessment , 2001, 2001 Power Engineering Society Summer Meeting. Conference Proceedings (Cat. No.01CH37262).

[24]  Ross Baldick,et al.  Coarse-grained distributed optimal power flow , 1997 .

[25]  O. Alsac,et al.  Optimal Load Flow with Steady-State Security , 1974 .

[26]  L. Wehenkel,et al.  A New Iterative Approach to the Corrective Security-Constrained Optimal Power Flow Problem , 2008, IEEE Transactions on Power Systems.

[27]  Junfeng Yang,et al.  A New Alternating Minimization Algorithm for Total Variation Image Reconstruction , 2008, SIAM J. Imaging Sci..