Incremental maximum margin clustering

This paper proposes incremental maximum margin clustering in which one data point at a time is examined to decide which cluster the new data point belongs. The proposed method adopts the off-line iterative maximum margin clustering method’s alternating optimization algorithm. Accurate online support vector regression is employed in the alternating optimization. To avoid premature convergence, a sequence of decremental unlearning and incremental learning steps is performed. The proposed method is experimentally argued to (i) be scalable and competitive on training time front when compared with iterative maximum margin clustering and (ii) achieve competitive cluster quality compared to the off-line counterpart.

[1]  Rong Jin,et al.  Generalized Maximum Margin Clustering and Unsupervised Kernel Learning , 2006, NIPS.

[2]  Jun Yu,et al.  Click Prediction for Web Image Reranking Using Multimodal Sparse Coding , 2014, IEEE Transactions on Image Processing.

[3]  Fei Wang,et al.  Linear Time Maximum Margin Clustering , 2010, IEEE Transactions on Neural Networks.

[4]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[5]  Weifeng Liu,et al.  Multiview Hessian Regularization for Image Annotation , 2013, IEEE Transactions on Image Processing.

[6]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[7]  Dacheng Tao,et al.  Constrained stochastic gradient descent for large-scale least squares problem , 2013, KDD.

[8]  Gert Cauwenberghs,et al.  Incremental and Decremental Support Vector Machine Learning , 2000, NIPS.

[9]  Dale Schuurmans,et al.  Maximum Margin Clustering , 2004, NIPS.

[10]  Douglas H. Fisher,et al.  Knowledge Acquisition Via Incremental Conceptual Clustering , 1987, Machine Learning.

[11]  Hava T. Siegelmann,et al.  Support Vector Clustering , 2002, J. Mach. Learn. Res..

[12]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.

[13]  Yuan Yan Tang,et al.  Multiview Hessian discriminative sparse coding for image annotation , 2013, Comput. Vis. Image Underst..

[14]  Ke Lu,et al.  Multiview Hessian regularized logistic regression for action recognition , 2015, Signal Process..

[15]  Meng Wang,et al.  Adaptive Hypergraph Learning and its Application in Image Classification , 2012, IEEE Transactions on Image Processing.

[16]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[17]  Ivor W. Tsang,et al.  Maximum Margin Clustering Made Practical , 2007, IEEE Transactions on Neural Networks.

[18]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[19]  Satu Elisa Schaeffer,et al.  Graph Clustering , 2017, Encyclopedia of Machine Learning and Data Mining.

[20]  Anil K. Jain Data clustering: 50 years beyond K-means , 2008, Pattern Recognit. Lett..

[21]  Yuan Yan Tang,et al.  High-Order Distance-Based Multiview Stochastic Learning in Image Classification , 2014, IEEE Transactions on Cybernetics.

[22]  J. Felsenstein An alternating least squares approach to inferring phylogenies from pairwise distances. , 1997, Systematic biology.

[23]  Daniel A. Keim,et al.  An Efficient Approach to Clustering in Large Multimedia Databases with Noise , 1998, KDD.

[24]  Charu C. Aggarwal,et al.  Graph Clustering , 2010, Encyclopedia of Machine Learning and Data Mining.

[25]  Rui Xu,et al.  Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.

[26]  André Carlos Ponce de Leon Ferreira de Carvalho,et al.  Spectral methods for graph clustering - A survey , 2011, Eur. J. Oper. Res..

[27]  Yongdong Zhang,et al.  Multiview Spectral Embedding , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[28]  James Theiler,et al.  Accurate On-line Support Vector Regression , 2003, Neural Computation.

[29]  Quanquan Gu,et al.  Subspace maximum margin clustering , 2009, CIKM.