High-Contrast and Ultra-Narrowband Terahertz Metamaterial Absorber Based on Two-Dimensional Trenched Metal Meta-Grating

[1]  Shuqi Chen,et al.  Color-selective three-dimensional polarization structures , 2022, Light: Science & Applications.

[2]  Yongzhi Cheng,et al.  Terahertz narrowband perfect metasurface absorber based on micro-ring-shaped GaAs array for enhanced refractive index sensing , 2022, Physica E: Low-dimensional Systems and Nanostructures.

[3]  Yongzhi Cheng,et al.  Temperature‐Tunable Terahertz Perfect Absorber Based on All‐Dielectric Strontium Titanate (STO) Resonator Structure , 2022, Advanced Theory and Simulations.

[4]  Yongzhi Cheng,et al.  Simple design of a six-band terahertz perfect metasurface absorber based on a single resonator structure , 2022, Physica Scripta.

[5]  Yongzhi Cheng,et al.  Dual-band tunable terahertz perfect absorber based on all-dielectric InSb resonator structure for sensing application , 2022, Journal of Alloys and Compounds.

[6]  He-xiu Xu,et al.  Metamaterial Absorbers: From Tunable Surface to Structural Transformation , 2022, Advanced materials.

[7]  David R. Smith,et al.  Ultra-broadband metamaterial absorbers from long to very long infrared regime , 2021, Light, science & applications.

[8]  Yongzhi Cheng,et al.  Terahertz perfect absorber based on InSb metasurface for both temperature and refractive index sensing , 2021, Optical Materials.

[9]  Hongxing Xu,et al.  Plasmonic hot-electron photodetection with quasi-bound states in the continuum and guided resonances , 2021, Nanophotonics.

[10]  Hongxing Xu,et al.  High‐Q Plasmonic Resonances: Fundamentals and Applications , 2021, Advanced Optical Materials.

[11]  S. Xiao,et al.  Symmetry‐Assisted Spectral Line Shapes Manipulation in Dielectric Double‐Fano Metasurfaces , 2020, Advanced Optical Materials.

[12]  D. Mao,et al.  Magnetic plasmon resonances in nanostructured topological insulators for strongly enhanced light–MoS2 interactions , 2020, Light, science & applications.

[13]  R. Averitt,et al.  Terahertz investigation of bound states in the continuum of metallic metasurfaces , 2020 .

[14]  T. Cao,et al.  Tuning of Classical Electromagnetically Induced Reflectance in Babinet Chalcogenide Metamaterials , 2020, iScience.

[15]  Yongzhi Cheng,et al.  Dual-band tunable terahertz perfect metamaterial absorber based on strontium titanate (STO) resonator structure , 2020 .

[16]  Fu Chen,et al.  Temperature Tunable Narrow-Band Terahertz Metasurface Absorber Based on InSb Micro-Cylinder Arrays for Enhanced Sensing Application , 2020, IEEE Access.

[17]  F. Yan,et al.  Enhancing sensing capacity of terahertz metamaterial absorbers with a surface-relief design , 2020 .

[18]  M. Pu,et al.  Hierarchical metamaterials for laser-infrared-microwave compatible camouflage. , 2020, Optics express.

[19]  Yuri S. Kivshar,et al.  Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval , 2019, Science Advances.

[20]  M. Soljačić,et al.  Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering , 2018, Nature.

[21]  Andrea Alù,et al.  Ultra‐Narrowband Metamaterial Absorbers for High Spectral Resolution Infrared Spectroscopy , 2018, Advanced Optical Materials.

[22]  T. Niemi,et al.  All-Metal Broadband Optical Absorbers Based on Block Copolymer Nanolithography. , 2018, ACS applied materials & interfaces.

[23]  Xiang Yin,et al.  Hyperbolic Metamaterial Devices for Wavefront Manipulation , 2018, Laser & Photonics Reviews.

[24]  N. Yu,et al.  Optical conductivity-based ultrasensitive mid-infrared biosensing on a hybrid metasurface , 2018, Light: Science & Applications.

[25]  Y. Kivshar,et al.  Asymmetric Metasurfaces with High-Q Resonances Governed by Bound States in the Continuum. , 2018, Physical review letters.

[26]  S. Wen,et al.  Plasmonically induced transparency in double-layered graphene nanoribbons , 2018, Photonics Research.

[27]  Duk-Yong Choi,et al.  Imaging-based molecular barcoding with pixelated dielectric metasurfaces , 2018, Science.

[28]  Zhiming Wang,et al.  Photothermal Circular Dichroism Induced by Plasmon Resonances in Chiral Metamaterial Absorbers and Bolometers. , 2018, Nano letters.

[29]  A. Alú,et al.  Trapping Light in Plain Sight: Embedded Photonic Eigenstates in Zero‐Index Metamaterials , 2018, 1802.01466.

[30]  Fei Ding,et al.  Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence , 2017, Light: Science & Applications.

[31]  Wei Wang,et al.  Ultrasensitive terahertz metamaterial sensor based on vertical split ring resonators , 2017 .

[32]  Xin Zhang,et al.  A three-dimensional all-metal terahertz metamaterial perfect absorber , 2017 .

[33]  Diego R. Abujetas,et al.  High-Contrast Fano Resonances in Single Semiconductor Nanorods , 2017 .

[34]  Andrey Bogdanov,et al.  High-Q Supercavity Modes in Subwavelength Dielectric Resonators. , 2017, Physical review letters.

[35]  Yuri Kivshar,et al.  Optical physics: Supercavity lasing , 2017, Nature.

[36]  Qin Chen,et al.  Metamaterial absorber integrated microfluidic terahertz sensors , 2016 .

[37]  Lei Zhou,et al.  Widely Tunable Terahertz Phase Modulation with Gate-Controlled Graphene Metasurfaces , 2015 .

[38]  Ibraheem Al-Naib,et al.  Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization , 2015 .

[39]  Weili Zhang,et al.  Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces , 2015 .

[40]  Koray Aydin,et al.  Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces. , 2014, ACS nano.

[41]  Guohui Xiao,et al.  Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit , 2013, Nature Communications.

[42]  R. Peng,et al.  Structured Metal Film as a Perfect Absorber , 2013, Advanced materials.

[43]  Steven G. Johnson,et al.  Observation of trapped light within the radiation continuum , 2013, Nature.

[44]  A. E. Cetin,et al.  Seeing protein monolayers with naked eye through plasmonic Fano resonances , 2011, Proceedings of the National Academy of Sciences.

[45]  M H Lee,et al.  Rayleigh anomaly-surface plasmon polariton resonances in palladium and gold subwavelength hole arrays. , 2009, Optics express.