Design of satisfaction output feedback controls for stochastic nonlinear systems under quadratic tracking risk-sensitive index

In this paper, the design problem of satisfaction output feedback controls for stochastic nonlinear systems in strict feedback form under long-term tracking risk-sensitive index is investigated. The index function adopted here is of quadratic form usually encountered in practice, rather than of quartic one used to beg the essential difficulty on controller design and performance analysis of the closed-loop systems. For any given risk-sensitive parameter and desired index value, by using the integrator backstepping method, an output feedback control is constructively designed so that the closed-loop system is bounded in probability and the risk-sensitive index is upper bounded by the desired value.

[1]  Miroslav Krstic,et al.  Output-feedback stochastic nonlinear stabilization , 1999, IEEE Trans. Autom. Control..

[2]  T. Başar,et al.  Model Simplification and Optimal Control of Stochastic Singularly Perturbed Systems under Exponentiated Quadratic Cost , 1996 .

[3]  Robert J. Elliott,et al.  A Finite-Dimensional Risk-Sensitive Control Problem , 1995 .

[4]  Farshad Khorrami,et al.  Application of a decentralized adaptive output feedback based on backstepping to power systems , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[5]  R. Khasminskii Stochastic Stability of Differential Equations , 1980 .

[6]  I. Kanellakopoulos,et al.  Nonlinear design of adaptive controllers for linear systems , 1994, IEEE Trans. Autom. Control..

[7]  W. Fleming,et al.  Risk sensitive control with ergodic cost criteria , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[8]  A. Bensoussan Stochastic Control of Partially Observable Systems , 1992 .

[9]  T. Başar,et al.  Adaptive controller design for tracking and disturbance attenuation in parametric strict-feedback nonlinear systems , 1998, IEEE Trans. Autom. Control..

[10]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[11]  Zhong-Ping Jiang,et al.  A recursive technique for tracking control of nonholonomic systems in chained form , 1999, IEEE Trans. Autom. Control..

[12]  P. Florchinger Lyapunov-Like Techniques for Stochastic Stability , 1995 .

[13]  H. Nagai Bellman Equations of Risk-Sensitive Control , 1996 .

[14]  Rhodes,et al.  Optimal stochastic linear systems with exponential performance criteria and their relation to deterministic differential games , 1973 .

[15]  A. Isidori Nonlinear Control Systems , 1985 .

[16]  Yungang Liu,et al.  Output feedback control design for strict-feedback stochastic nonlinear systems under a risk-sensitive cost , 2003, IEEE Trans. Autom. Control..

[17]  M. James,et al.  Risk-sensitive control and dynamic games for partially observed discrete-time nonlinear systems , 1994, IEEE Trans. Autom. Control..

[18]  Zhong-Ping Jiang,et al.  Backstepping-based adaptive controllers for uncertain nonholonomic systems , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[19]  T. Runolfsson The equivalence between infinite-horizon optimal control of stochastic systems with exponential-of-integral performance index and stochastic differential games , 1994, IEEE Trans. Autom. Control..

[20]  T. Başar,et al.  Backstepping Controller Design for Nonlinear Stochastic Systems Under a Risk-Sensitive Cost Criterion , 1999 .

[21]  W. Fleming,et al.  Risk-Sensitive Control on an Infinite Time Horizon , 1995 .

[22]  A. Annaswamy,et al.  Adaptive control of nonlinear systems with a triangular structure , 1994, IEEE Trans. Autom. Control..

[23]  I. Kanellakopoulos,et al.  Systematic Design of Adaptive Controllers for Feedback Linearizable Systems , 1991, 1991 American Control Conference.

[24]  Zigang Pan,et al.  Locally optimal backstepping design , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[25]  P. Whittle Risk-Sensitive Optimal Control , 1990 .

[26]  T. Basar,et al.  H∞-0ptimal Control and Related Minimax Design Problems: A Dynamic Game Approach , 1996, IEEE Trans. Autom. Control..

[27]  Robert J. Elliott,et al.  General finite-dimensional risk-sensitive problems and small noise limits , 1996, IEEE Trans. Autom. Control..

[28]  Petar V. Kokotovic,et al.  Locally optimal and robust backstepping design , 2000, IEEE Trans. Autom. Control..

[29]  Harry G. Kwatny,et al.  On the structure of optimal area controls in electric power networks , 1973 .