Pine Forest Height Inversion Using Single-Pass X-Band PolInSAR Data

A sparse pine forest is investigated at X-band on a single-pass polarimetric synthetic aperture radar interferometry (PolInSAR) data set using HH and HV channels. These first preliminary results show that the associated phase centers present a significant vertical separation (about 6 m) allowed by penetration through gaps in the canopy. Forest parameter inversion using the random volume over ground (RVoG) model is evaluated and adapted at this frequency. The forest height can be retrieved accurately by supposing a high mean extinction coefficient (around 1.6 (dB/m). The penetration depth is estimated to be around 4 m, based on the forest height ground measurements. Finally, a time-frequency analysis using a sublook decomposition is performed to increase the vertical separation of the polarimetric phase centers. As a consequence, RVoG-inversion performance is improved, and a penetration depth that is in better accordance with a previous work (of the order of 2 m) is found. This paper has shown that the height inversion of a pine forest was possible using PolInSAR X-band data and that the performance was more dependent on the forest density than at lower frequencies.

[1]  Jakob J. van Zyl,et al.  The effect of topography on radar scattering from vegetated areas , 1992, IEEE Trans. Geosci. Remote. Sens..

[2]  M. Moghaddam,et al.  Vegetation characteristics and underlying topography from interferometric radar , 1996 .

[3]  Konstantinos Papathanassiou,et al.  Forest Height Estimation using Dual-Pol InSAR Configurations , 2004 .

[4]  Konstantinos Papathanassiou,et al.  Single-baseline polarimetric SAR interferometry , 2001, IEEE Trans. Geosci. Remote. Sens..

[5]  Jean-Claude Souyris,et al.  On the use of complex SAR image spectral analysis for target detection: assessment of polarimetry , 2003, IEEE Trans. Geosci. Remote. Sens..

[6]  Adrian K. Fung,et al.  Effect of tree structure on X-band microwave signature of conifers , 1993, IEEE Trans. Geosci. Remote. Sens..

[7]  Xavier Dupuis,et al.  POLINSAR calibration of a single-pass deramp-on–receive system: example of RAMSES airborne radar , 2005 .

[8]  S. R. Cloude,et al.  The effect of temporal decorrelation on the inversion of forest parameters from Pol-InSAR data , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[9]  Irena Hajnsek,et al.  PolInSAR analysis of X-band data over vegetated and urban areas , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Paris W. Vachon,et al.  Coherence estimation for SAR imagery , 1999, IEEE Trans. Geosci. Remote. Sens..

[11]  Thomas L. Ainsworth,et al.  Polarimetric SAR data compensation for terrain azimuth slope variation , 2000, IEEE Trans. Geosci. Remote. Sens..

[12]  Lars M. H. Ulander,et al.  C-band repeat-pass interferometric SAR observations of the forest , 1997, IEEE Trans. Geosci. Remote. Sens..

[13]  S. Hensley,et al.  First P-band results using the GeoSAR mapping system , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[14]  John C. Curlander,et al.  Synthetic Aperture Radar: Systems and Signal Processing , 1991 .

[15]  S. Cloude,et al.  Three-stage inversion process for polarimetric SAR interferometry , 2003 .

[16]  Laurent Ferro-Famil,et al.  Scene characterization using subaperture polarimetric SAR data , 2003, IEEE Trans. Geosci. Remote. Sens..

[17]  Philippe Dreuillet,et al.  The ONERA RAMSES SAR system: Status in 2004 , 2004 .

[18]  Jong-Sen Lee,et al.  Measurement of topography using polarimetric SAR images , 1996, IEEE Trans. Geosci. Remote. Sens..

[19]  Irena Hajnsek,et al.  TanDEM−X: Mission and Science Exploration , 2007 .