Statistical limit superior and limit inferior

Following the concept of statistical convergence and statistical cluster points of a sequence x, we give a definition of statistical limit superior and inferior which yields natural relationships among these ideas: e.g., x is statistically convergent if and only if st-liminfx = st-limsupx. The statistical core of x is also introduced, for which an analogue of Knopp's Core Theorem is proved. Also, it is proved that a bounded sequence that is Cl-summable to its statistical limit superior is statistically convergent.

[1]  Jeff Connor,et al.  On Statistical Limit Points and the Consistency of Statistical Convergence , 1996 .

[2]  H. I. Miller,et al.  A measure theoretical subsequence characterization of statistical convergence , 1995 .

[3]  R. Tibshirani,et al.  An Introduction to the Bootstrap , 1995 .

[4]  Jeff Connor,et al.  Measures and Ideals of C* (X) , 1993 .

[5]  J. A. Fridy,et al.  Statistical limit points , 1993 .

[6]  J. A. Fridy,et al.  Lacunary Statistical Summability , 1993 .

[7]  Jeff Connor,et al.  Strong integral summability and the Stone-Čech compactification of the half-line , 1993 .

[8]  J. A. Fridy,et al.  A MATRIX CHARACTERIZATION OF STATISTICAL CONVERGENCE , 1991 .

[9]  Paul Erdös,et al.  Sur Les Densités de Certaines Suites D'Entiers , 1989 .

[10]  I. J. Maddox Statistical convergence in a locally convex space , 1988, Mathematical Proceedings of the Cambridge Philosophical Society.

[11]  J. S. Connor,et al.  THE STATISTICAL AND STRONG p-CESARO CONVERGENCE OF SEQUENCES , 1988 .

[12]  I. J. Maddox Some analogues of Knopp's core theorem. , 1979 .

[13]  I. J. Maddox Steinhaus type theorems for summability matrices , 1974 .

[14]  Franklin A. Graybill,et al.  Introduction to The theory , 1974 .

[15]  Ralph G. Archibald,et al.  An introduction to the theory of numbers , 1970 .

[16]  P. Heywood Trigonometric Series , 1968, Nature.

[17]  R. Creighton Buck,et al.  Generalized Asymptotic Density , 1953 .

[18]  H. Fast,et al.  Sur la convergence statistique , 1951 .

[19]  H. R. Pitt Divergent Series , 1951, Nature.

[20]  E. T. An Introduction to the Theory of Numbers , 1946, Nature.

[21]  E. Wright,et al.  An Introduction to the Theory of Numbers , 1939 .

[22]  Konrad Knopp Zur Theorie der Limitierungsverfahren , 1930 .