Existence and consistency of Wasserstein barycenters
暂无分享,去创建一个
[1] L. Brown,et al. Measurable Selections of Extrema , 1973 .
[2] S. Chiba,et al. Dynamic programming algorithm optimization for spoken word recognition , 1978 .
[3] Robert J. Zimmer,et al. Ergodic Theory and Semisimple Groups , 1984 .
[4] U. Grenander,et al. Structural Image Restoration through Deformable Templates , 1991 .
[5] Ulf Grenander,et al. General Pattern Theory: A Mathematical Study of Regular Structures , 1993 .
[6] J. O. Ramsay,et al. Functional Data Analysis (Springer Series in Statistics) , 1997 .
[7] Claudia Czado,et al. Assessing the similarity of distributions - finite sample performance of the empirical mallows distance , 1998 .
[8] David G. Kendall,et al. Shape & Shape Theory , 1999 .
[9] T. K. Carne,et al. Shape and Shape Theory , 1999 .
[10] B. Silverman,et al. Functional Data Analysis , 1997 .
[11] T. Porter. SHAPE AND SHAPE THEORY (Wiley Series in Probability and Statistics) , 2000 .
[12] D. Burago,et al. A Course in Metric Geometry , 2001 .
[13] Karl-Theodor Sturm,et al. Probability Measures on Metric Spaces of Nonpositive Curvature , 2003 .
[14] Terence P. Speed,et al. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias , 2003, Bioinform..
[15] C. Villani,et al. Ricci curvature for metric-measure spaces via optimal transport , 2004, math/0412127.
[16] L. Ambrosio,et al. Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .
[17] Alain Trouvé,et al. Metamorphoses Through Lie Group Action , 2005, Found. Comput. Math..
[18] L. Ambrosio,et al. Chapter 1 – Gradient Flows of Probability Measures , 2007 .
[19] Fabrice Gamboa,et al. Semi-parametric estimation of shifts , 2007, 0712.1936.
[20] C. Villani. Optimal Transport: Old and New , 2008 .
[21] Guillaume Carlier,et al. Barycenters in the Wasserstein Space , 2011, SIAM J. Math. Anal..
[22] Thibaut Le Gouic,et al. Distribution's template estimate with Wasserstein metrics , 2011, 1111.5927.
[23] B. Bercu,et al. A Robbins-Monro procedure for estimation in semiparametric regression models , 2011, 1101.0736.
[24] Shin-Ichi Ohta,et al. Barycenters in Alexandrov spaces of curvature bounded below , 2012 .
[25] Jérémie Bigot,et al. Consistent estimation of a population barycenter in the Wasserstein space , 2013 .
[26] Jean-Michel Loubes,et al. Statistical properties of the quantile normalization method for density curve alignment. , 2013, Mathematical biosciences.
[27] Localisation de masse et espaces de Wasserstein , 2013 .
[28] Brendan Pass,et al. Wasserstein Barycenters over Riemannian manifolds , 2014, 1412.7726.
[29] Adrian N. Bishop,et al. Information fusion via the wasserstein barycenter in the space of probability measures: Direct fusion of empirical measures and Gaussian fusion with unknown correlation , 2014, 17th International Conference on Information Fusion (FUSION).
[30] Jean-Michel Loubes,et al. A parametric registration model for warped distributions with Wasserstein's distance , 2015, J. Multivar. Anal..
[31] E. Barrio,et al. A statistical analysis of a deformation model with Wasserstein barycenters : estimation procedure and goodness of fit test , 2015, 1508.06465.
[32] Uwe D. Hanebeck,et al. On Wasserstein Barycenters and MMOSPA Estimation , 2015, IEEE Signal Processing Letters.
[33] J. A. Cuesta-Albertos,et al. Wide Consensus for Parallelized Inference , 2015, 1511.05350.
[34] Patrizia Berti,et al. Gluing lemmas and Skorohod representations , 2015 .