Existence and consistency of Wasserstein barycenters

Based on the Fréchet mean, we define a notion of barycenter corresponding to a usual notion of statistical mean. We prove the existence of Wasserstein barycenters of random probabilities defined on a geodesic space (E, d). We also prove the consistency of this barycenter in a general setting, that includes taking barycenters of empirical versions of the probability measures or of a growing set of probability measures.

[1]  L. Brown,et al.  Measurable Selections of Extrema , 1973 .

[2]  S. Chiba,et al.  Dynamic programming algorithm optimization for spoken word recognition , 1978 .

[3]  Robert J. Zimmer,et al.  Ergodic Theory and Semisimple Groups , 1984 .

[4]  U. Grenander,et al.  Structural Image Restoration through Deformable Templates , 1991 .

[5]  Ulf Grenander,et al.  General Pattern Theory: A Mathematical Study of Regular Structures , 1993 .

[6]  J. O. Ramsay,et al.  Functional Data Analysis (Springer Series in Statistics) , 1997 .

[7]  Claudia Czado,et al.  Assessing the similarity of distributions - finite sample performance of the empirical mallows distance , 1998 .

[8]  David G. Kendall,et al.  Shape & Shape Theory , 1999 .

[9]  T. K. Carne,et al.  Shape and Shape Theory , 1999 .

[10]  B. Silverman,et al.  Functional Data Analysis , 1997 .

[11]  T. Porter SHAPE AND SHAPE THEORY (Wiley Series in Probability and Statistics) , 2000 .

[12]  D. Burago,et al.  A Course in Metric Geometry , 2001 .

[13]  Karl-Theodor Sturm,et al.  Probability Measures on Metric Spaces of Nonpositive Curvature , 2003 .

[14]  Terence P. Speed,et al.  A comparison of normalization methods for high density oligonucleotide array data based on variance and bias , 2003, Bioinform..

[15]  C. Villani,et al.  Ricci curvature for metric-measure spaces via optimal transport , 2004, math/0412127.

[16]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[17]  Alain Trouvé,et al.  Metamorphoses Through Lie Group Action , 2005, Found. Comput. Math..

[18]  L. Ambrosio,et al.  Chapter 1 – Gradient Flows of Probability Measures , 2007 .

[19]  Fabrice Gamboa,et al.  Semi-parametric estimation of shifts , 2007, 0712.1936.

[20]  C. Villani Optimal Transport: Old and New , 2008 .

[21]  Guillaume Carlier,et al.  Barycenters in the Wasserstein Space , 2011, SIAM J. Math. Anal..

[22]  Thibaut Le Gouic,et al.  Distribution's template estimate with Wasserstein metrics , 2011, 1111.5927.

[23]  B. Bercu,et al.  A Robbins-Monro procedure for estimation in semiparametric regression models , 2011, 1101.0736.

[24]  Shin-Ichi Ohta,et al.  Barycenters in Alexandrov spaces of curvature bounded below , 2012 .

[25]  Jérémie Bigot,et al.  Consistent estimation of a population barycenter in the Wasserstein space , 2013 .

[26]  Jean-Michel Loubes,et al.  Statistical properties of the quantile normalization method for density curve alignment. , 2013, Mathematical biosciences.

[27]  Localisation de masse et espaces de Wasserstein , 2013 .

[28]  Brendan Pass,et al.  Wasserstein Barycenters over Riemannian manifolds , 2014, 1412.7726.

[29]  Adrian N. Bishop,et al.  Information fusion via the wasserstein barycenter in the space of probability measures: Direct fusion of empirical measures and Gaussian fusion with unknown correlation , 2014, 17th International Conference on Information Fusion (FUSION).

[30]  Jean-Michel Loubes,et al.  A parametric registration model for warped distributions with Wasserstein's distance , 2015, J. Multivar. Anal..

[31]  E. Barrio,et al.  A statistical analysis of a deformation model with Wasserstein barycenters : estimation procedure and goodness of fit test , 2015, 1508.06465.

[32]  Uwe D. Hanebeck,et al.  On Wasserstein Barycenters and MMOSPA Estimation , 2015, IEEE Signal Processing Letters.

[33]  J. A. Cuesta-Albertos,et al.  Wide Consensus for Parallelized Inference , 2015, 1511.05350.

[34]  Patrizia Berti,et al.  Gluing lemmas and Skorohod representations , 2015 .