Gold-nanorod-photosensitized titanium dioxide with wide-range visible-light harvesting based on localized surface plasmon resonance.

[1]  Shuxin Ouyang,et al.  Nano‐photocatalytic Materials: Possibilities and Challenges , 2012, Advanced materials.

[2]  X. Duan,et al.  Towards highly efficient photocatalysts using semiconductor nanoarchitectures , 2012 .

[3]  Julia Baldauf,et al.  Improved thermal stability of Au nanorods by use of photosensitive layered titanates for gas sensing applications , 2011 .

[4]  Jinhua Ye,et al.  Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation. , 2004, Angewandte Chemie.

[5]  Tetsu Tatsuma,et al.  Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. , 2005, Journal of the American Chemical Society.

[6]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .

[7]  M. El-Sayed,et al.  Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant , 1999 .

[8]  Ming Lun Tseng,et al.  Plasmon inducing effects for enhanced photoelectrochemical water splitting: X-ray absorption approach to electronic structures. , 2012, ACS nano.

[9]  Avelino Corma,et al.  Titania supported gold nanoparticles as photocatalyst. , 2011, Physical chemistry chemical physics : PCCP.

[10]  Jinhua Ye,et al.  Efficient photocatalytic decomposition of acetaldehyde over a solid-solution perovskite (Ag0.75Sr0.25)(Nb0.75Ti0.25)O3 under visible-light irradiation. , 2008, Journal of the American Chemical Society.

[11]  Xueping Gao,et al.  Visible-light-driven oxidation of organic contaminants in air with gold nanoparticle catalysts on oxide supports. , 2008, Angewandte Chemie.

[12]  Florian Libisch,et al.  Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. , 2013, Nano letters.

[13]  M. García,et al.  Surface plasmons in metallic nanoparticles: fundamentals and applications , 2012 .

[14]  D. Evanoff,et al.  Synthesis and optical properties of silver nanoparticles and arrays. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[15]  Ayusman Sen,et al.  Controlled synthesis of heterogeneous metal-titania nanostructures and their applications. , 2012, Journal of the American Chemical Society.

[16]  G. Stucky,et al.  Plasmonic photoanodes for solar water splitting with visible light. , 2012, Nano letters.

[17]  Xiaobo Chen,et al.  Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals , 2011, Science.

[18]  S. Linic,et al.  Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. , 2011, Nature materials.

[19]  X. Duan,et al.  Plasmonic enhancements of photocatalytic activity of Pt/n-Si/Ag photodiodes using Au/Ag core/shell nanorods. , 2011, Journal of the American Chemical Society.

[20]  Wonyong Choi,et al.  The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics , 1994 .

[21]  Peng Wang,et al.  Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles. , 2012, Physical chemistry chemical physics : PCCP.

[22]  W. Ingler,et al.  Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2 , 2002, Science.

[23]  Stephen B. Cronin,et al.  A Review of Surface Plasmon Resonance‐Enhanced Photocatalysis , 2013 .

[24]  H. Kisch,et al.  Daylight photocatalysis by carbon-modified titanium dioxide. , 2003, Angewandte Chemie.

[25]  Xiaoyan Qin,et al.  Ag@AgCl: a highly efficient and stable photocatalyst active under visible light. , 2008, Angewandte Chemie.

[26]  Eduardo A Coronado,et al.  Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale. , 2011, Nanoscale.

[27]  C. Ohm,et al.  Enhanced Thermal Stability of Gold and Silver Nanorods by Thin Surface Layers , 2007 .

[28]  Jiangtian Li,et al.  Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. , 2012, Journal of the American Chemical Society.

[29]  H. Ramanarayan,et al.  Anisotropic growth of titania onto various gold nanostructures: synthesis, theoretical understanding, and optimization for catalysis. , 2011, Angewandte Chemie.

[30]  Prathamesh Pavaskar,et al.  Photocatalytic Conversion of CO2 to Hydrocarbon Fuels via Plasmon-Enhanced Absorption and Metallic Interband Transitions , 2011 .

[31]  F. J. Lopez-Tenllado,et al.  Selective photooxidation of alcohols as test reaction for photocatalytic activity , 2012 .

[32]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[33]  Jinhua Ye,et al.  Nanoarchitectonics of a Au nanoprism array on WO3 film for synergistic optoelectronic response , 2011, Science and technology of advanced materials.

[34]  Mostafa A. El-Sayed,et al.  Evidence for Bilayer Assembly of Cationic Surfactants on the Surface of Gold Nanorods , 2001 .

[35]  H. Xin,et al.  Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. , 2012, Nature materials.

[36]  Yasuhiro Shiraishi,et al.  Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation. , 2012, Journal of the American Chemical Society.

[37]  E. Hutter,et al.  Exploitation of Localized Surface Plasmon Resonance , 2004 .

[38]  H. Kisch,et al.  Tageslicht‐Photokatalyse durch Kohlenstoff‐modifiziertes Titandioxid , 2003 .

[39]  Z. Zou,et al.  Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2 , 2007 .

[40]  Alaaldin M. Alkilany,et al.  The Many Faces of Gold Nanorods , 2010 .

[41]  Paul Mulvaney,et al.  Gold nanorods: Synthesis, characterization and applications , 2005 .

[42]  Jiaguo Yu,et al.  Microwave-hydrothermal preparation and visible-light photoactivity of plasmonic photocatalyst Ag-TiO2 nanocomposite hollow spheres. , 2010, Chemistry, an Asian journal.

[43]  Suljo Linic,et al.  Predictive Model for the Design of Plasmonic Metal/Semiconductor Composite Photocatalysts , 2011 .

[44]  Ewa Kowalska,et al.  Visible-light-induced photocatalysis through surface plasmon excitation of gold on titania surfaces. , 2010, Physical chemistry chemical physics : PCCP.

[45]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[46]  Hristina Petrova,et al.  On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating. , 2006, Physical chemistry chemical physics : PCCP.

[47]  Miaofang Chi,et al.  A highly active titanium dioxide based visible-light photocatalyst with nonmetal doping and plasmonic metal decoration. , 2011, Angewandte Chemie.