On the complexity of enumerating possible dynamics of sparsely connected Boolean network automata with simple update rules

In this endeavor, we prove that counting the Fixed Point (FP) configurations and the predecessor and ancestor configurations in two classes of network automata, called Sequential and Synchronous Dynamical Systems (SDSs and SyDSs, respectively), are computationally intractable problems. Moreover, this intractability is shown to hold when each node in such a network is required to update according to (i) a monotone Boolean function, (ii) a symmetric Boolean function, or even (iii) a simple threshold function that is both monotone and symmetric. Furthermore, the hardness of the exact enumeration of FPs and other types of configurations of interest remains to hold even in some severely restricted cases with respect to both the network topology and the diversity (or lack thereof) of individual node’s local update rules. Namely, we show that the counting problems of interest remain hard even when the nodes of an SDS or SyDS use at most two different update rules from a given restricted class, and, additionally, when the network topologies are constrained so that each node has only c = O(1) neighbors for small values of constant c. Our results also have considerable implications for other discrete dynamical system models studied in applied mathematics, physics, biology and computer science, such as Hopfield networks and spin glasses. In particular, one corollary of our results is that determining the memory capacity of sparse discrete Hopfield networks (viewed as associative memories) remains computationally intractable even when the interconnection and dependence structure among the nodes of a Hopfield network is severely restricted.

[1]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[2]  E. Goles,et al.  Neural and Automata Networks: Dynamical Behavior and Applications , 2011 .

[3]  Harry B. Hunt,et al.  Gardens of Eden and Fixed Points in Sequential Dynamical Systems , 2001, DM-CCG.

[4]  Christian M. Reidys,et al.  Sequential dynamical systems and applications to simulations , 2000, Proceedings 33rd Annual Simulation Symposium (SS 2000).

[5]  Eric Goles,et al.  Cellular automata and complex systems , 1999 .

[6]  Stephen Wolfram,et al.  Theory and Applications of Cellular Automata , 1986 .

[7]  B A Huberman,et al.  Evolutionary games and computer simulations. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Gul A. Agha,et al.  On Computational Complexity of Counting Fixed Points in Symmetric Boolean Graph Automata , 2005, UC.

[9]  Gul A. Agha,et al.  Concurrency vs. sequential interleavings in 1-D threshold cellular automata , 2004, 18th International Parallel and Distributed Processing Symposium, 2004. Proceedings..

[10]  Pekka Orponen,et al.  On the Computational Complexity of Analyzing Hopfield Nets , 1989, Complex Syst..

[11]  J. Myhill The converse of Moore’s Garden-of-Eden theorem , 1963 .

[12]  Pekka Orponen,et al.  Attraction Radii in Binary Hopfield Nets are Hard to Compute , 1993, Neural Computation.

[13]  Christian M. Reidys,et al.  Elements of a theory of computer simulation I: Sequential CA over random graphs , 1999, Appl. Math. Comput..

[14]  室 章治郎 Michael R.Garey/David S.Johnson 著, "COMPUTERS AND INTRACTABILITY A guide to the Theory of NP-Completeness", FREEMAN, A5判変形判, 338+xii, \5,217, 1979 , 1980 .

[15]  T. E. Ingerson,et al.  Structure in asynchronous cellular automata , 1984 .

[16]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[17]  Harry B. Hunt,et al.  Reachability problems for sequential dynamical systems with threshold functions , 2003, Theor. Comput. Sci..

[18]  Gustavo Deco,et al.  Finit Automata-Models for the Investigation of Dynamical Systems , 1997, Inf. Process. Lett..

[19]  Richard M. Karp,et al.  Monte-Carlo algorithms for enumeration and reliability problems , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[20]  S. Wolfram Computation theory of cellular automata , 1984 .

[21]  Bruno Durand Inversion of 2D Cellular Automata: Some Complexity Results , 1994, Theor. Comput. Sci..

[22]  Christian M. Reidys,et al.  Elements of a theory of simulation II: sequential dynamical systems , 2000, Appl. Math. Comput..

[23]  Gul A. Agha,et al.  Computational Complexity of Predicting Some Properties of Large-Scale Agent Ensembles' Dynamical Evolution , 2005, EUMAS.

[24]  P. T. To,et al.  On Complexity of Counting Fixed Point Configurations in Certain Classes of Graph Automata , 2005 .

[25]  Jarkko Kari,et al.  Reversibility and Surjectivity Problems of Cellular Automata , 1994, J. Comput. Syst. Sci..

[26]  Richard M. Karp,et al.  Monte-Carlo algorithms for the planar multiterminal network reliability problem , 1985, J. Complex..

[27]  Frederic Green,et al.  NP-Complete Problems in Cellular Automata , 1987, Complex Syst..

[28]  C. Robinson Dynamical Systems: Stability, Symbolic Dynamics, and Chaos , 1994 .

[29]  Predrag T. Tosic On the Complexity of Counting Fixed Points and Gardens of Eden in Sequential Dynamical Systems on Planar Bipartite Graphs , 2006, Int. J. Found. Comput. Sci..

[30]  Eric Goles,et al.  Cellular automata, dynamical systems, and neural networks , 1994 .

[31]  Serafino Amoroso,et al.  Decision Procedures for Surjectivity and Injectivity of Parallel Maps for Tessellation Structures , 1972, J. Comput. Syst. Sci..

[32]  L Glass,et al.  Counting and classifying attractors in high dimensional dynamical systems. , 1996, Journal of theoretical biology.

[33]  Karel Culik,et al.  On Invertible Cellular Automata , 1987, Complex Syst..

[34]  Harry B. Hunt,et al.  The Complexity of Planar Counting Problems , 1998, SIAM J. Comput..

[35]  Predrag T. Tosic Counting Fixed Points and Gardens of Eden of Sequential Dynamical Systems on Planar Bipartite Graphs , 2005, Electron. Colloquium Comput. Complex..

[36]  Mark Jerrum,et al.  Approximating the Permanent , 1989, SIAM J. Comput..

[37]  C. Barrett,et al.  DICHOTOMY RESULTS FOR SEQUENTIAL DYNAMICAL SYSTEMS , 2000 .

[38]  Charles R. Dyer,et al.  One-Way Bounded Cellular Automata , 1980, Inf. Control..

[39]  Christian M. Reidys,et al.  Elements of a theory of simulation III: equivalence of SDS , 2001, Appl. Math. Comput..

[40]  Max H. Garzon,et al.  Models of massive parallelism: analysis of cellular automata and neural networks , 1995 .

[41]  S. Kauffman Metabolic stability and epigenesis in randomly constructed genetic nets. , 1969, Journal of theoretical biology.

[42]  Predrag T. Tosic On counting fixed point configurations in star networks , 2005, 19th IEEE International Parallel and Distributed Processing Symposium.

[43]  Catherine S. Greenhill The complexity of counting colourings and independent sets in sparse graphs and hypergraphs , 2000, computational complexity.

[44]  Bruno Durand A Random NP-Complete Problem for Inversion of 2D Cellular Automata , 1995, Theor. Comput. Sci..

[45]  Salil P. Vadhan,et al.  The Complexity of Counting in Sparse, Regular, and Planar Graphs , 2002, SIAM J. Comput..

[46]  Klaus Sutner,et al.  De Bruijn Graphs and Linear Cellular Automata , 1991, Complex Syst..

[47]  Ingo Wegener,et al.  The complexity of Boolean functions , 1987 .

[48]  Predrag T. Tosic Computational Complexity of Some Enumeration Problems About Uniformly Sparse Boolean Network Automata , 2006, Electron. Colloquium Comput. Complex..

[49]  D. Richardson,et al.  Tessellations with Local Transformations , 1972, J. Comput. Syst. Sci..

[50]  Harry B. Hunt,et al.  Predecessor and Permutation Existence Problems for Sequential Dynamical Systems , 2003, DMCS.

[51]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Christian M. Reidys,et al.  Discrete, sequential dynamical systems , 2001, Discret. Math..

[53]  M. Jerrum Two-dimensional monomer-dimer systems are computationally intractable , 1987 .

[54]  Zsuzsanna Róka,et al.  One-Way Cellular Automata on Cayley Graphs , 1993, Theor. Comput. Sci..

[55]  Gul A. Agha,et al.  Characterizing Configuration Spaces of Simple Threshold Cellular Automata , 2004, ACRI.

[56]  Mark Jerrum,et al.  Polynomial-Time Approximation Algorithms for the Ising Model , 1990, SIAM J. Comput..

[57]  Melanie Mitchell,et al.  Computation in Cellular Automata: A Selected Review , 2005, Non-standard Computation.

[58]  Jarkko Kari,et al.  Theory of cellular automata: A survey , 2005, Theor. Comput. Sci..

[59]  Sorin Istrail,et al.  Statistical mechanics, three-dimensionality and NP-completeness: I. Universality of intracatability for the partition function of the Ising model across non-planar surfaces (extended abstract) , 2000, STOC '00.

[60]  Klaus Sutner,et al.  On the Computational Complexity of Finite Cellular Automata , 1995, J. Comput. Syst. Sci..

[61]  S. Kauffman Emergent properties in random complex automata , 1984 .

[62]  Dan Roth,et al.  On the Hardness of Approximate Reasoning , 1993, IJCAI.

[63]  S. Wolfram Twenty Problems in the Theory of Cellular Automata , 1985 .

[64]  F. Barahona On the computational complexity of Ising spin glass models , 1982 .

[65]  J. J. Hopfield,et al.  “Neural” computation of decisions in optimization problems , 1985, Biological Cybernetics.