Identification of a class of nonlinear continuous-time systems using Hartley modulating functions

Most of the existing approaches to identification of nonlinear dynamic systems involve matching a given input-output behaviour with empirical discrete-time approximations such as artificial neural networks, Kolmogorov-Gabor polynomials, radial basis function networks, etc. Techniques for dealing with physically-based continuous-time models are either applicable to only a restricted class of systems or are computationally very demanding. In this paper a new methodology is presented that is applicable to a large class of nonlinear continuous-time systems, by defining a set of Hartley modulating functions for characterizing the continuous process signals. The advantages of this new class of modulating functions are that a set of algebraic equations with real coefficients results, the formulations are free from boundary conditions, and the computations can be made using fast algorithms for the discrete Hartley transformation. The resulting estimation scheme is applied to different categories of nonlinear syst...

[1]  R. Mohler,et al.  Bilinear system identification by Walsh functions , 1978 .

[2]  Yen-Ping Shih,et al.  Parameter Estimation of Bilinear Systems Via Walsh Functions , 1978 .

[3]  Kon Max Wong,et al.  Bilinear system identification by block pulse functions , 1981 .

[4]  R. Kalaba,et al.  Control, Identification, and Input Optimization , 1982 .

[5]  Eric Walter,et al.  Identifiability of State Space Models , 1982 .

[6]  B. Cheng,et al.  Analysis and parameter estimation of bilinear systems via block-pulse functions , 1982 .

[7]  Ganti Prasada Rao,et al.  Piecewise linear system identification via Walsh functions , 1982 .

[8]  G. Rao Piecewise Constant Orthogonal Functions and Their Application to Systems and Control , 1983 .

[9]  G. Rao,et al.  Identification of Continuous Dynamical Systems: The Poisson Moment Functional (Pmf) Approach , 1983 .

[10]  Lennart Ljung,et al.  Theory and Practice of Recursive Identification , 1983 .

[11]  Ganti Prasada Rao,et al.  Identification of Continuous Dynamical Systems , 1983 .

[12]  Y. Shih,et al.  Analysis and parameter estimation of bilinear systems via Chebyshev polynomials , 1984 .

[13]  A. N. Jha,et al.  Parameter identification of non-linear systems using Laguerre operational matrices , 1985 .

[15]  A. Pearson,et al.  On the identification of polynomial input-output differential systems , 1985 .

[16]  Dong-Her Shih,et al.  The shifted Legend re approach to non-linear system analysis and identification , 1985 .

[17]  C. Hwang,et al.  Parameter identification of bilinear systems using the Galerkin method , 1985 .

[18]  Fan-Chu Kung,et al.  Analysis and identification of Hammerstein model non-linear delay systems using block-pulse function expansions , 1986 .

[19]  Tsu-Tian Lee,et al.  Analysis, parameter estimation and optimal control of non-linear systems via general orthogonal polynomials , 1986 .

[20]  Wen-Liang Chen,et al.  Analysis and identification of systems with a non-linear element , 1986 .

[21]  Ronald N. Bracewell The Hartley transform , 1986 .

[22]  J. Chou,et al.  Identification of time-varying bilinear systems using legendre series , 1986 .

[23]  H. Unbehauen,et al.  Identification of continuous systems , 1987 .

[24]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[25]  Hsieh S. Hou,et al.  The Fast Hartley Transform Algorithm , 1987, IEEE Transactions on Computers.

[26]  H. Unbehauen,et al.  Identification Methods for Nonlinear MISO Systems , 1987 .

[27]  J. Chou,et al.  Analysis and identification of non-linear systems via shifted Jacobi series , 1987 .

[28]  Application of generalized orthogonal polynomials to parameter estimation of time-invariant and bilinear systems , 1987 .

[29]  H. Unbehauen,et al.  Two Algorithms for Model Structure Determination of Nonlinear Dynamic Systems with Applications to Industrial Processes , 1988 .

[30]  A. Pearson Least squares parameter identification of nonlinear differential I/O models , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[31]  H. Unbehauen,et al.  Application and comparison of different identification schemes under industrial conditions , 1988 .

[32]  Chyi Hwang,et al.  Series expansion approach to the analysis and identification of discrete Hammerstein systems , 1988 .

[33]  Stephen P. Banks,et al.  Mathematical theories of nonlinear systems , 1988 .

[34]  Kumpati S. Narendra,et al.  Identification and control of dynamical systems using neural networks , 1990, IEEE Trans. Neural Networks.

[35]  Stephen A. Billings,et al.  Non-linear system identification using neural networks , 1990 .

[36]  S. Dasgupta,et al.  Persistent excitation in bilinear systems , 1991 .

[37]  H. Unbehauen,et al.  Identification of continuous-time systems , 1991 .

[38]  Martin Pottman,et al.  Identification of non-linear processes using reciprocal multiquadric functions , 1992 .

[39]  Stephen A. Billings,et al.  Properties of neural networks with applications to modelling non-linear dynamical systems , 1992 .

[40]  A. E. Pearson,et al.  Discrete Frequency Formats for Linear Differential System Identification , 1993 .

[41]  Michel Gevers,et al.  Towards a Joint Design of Identification and Control , 1993 .

[42]  Dale E. Seborg,et al.  Application of a general multi-model approach for identification of highly nonlinear processes-a case study , 1993 .