Statistical Nano CMOS Variability and Its Impact on SRAM

The years of “happy scaling” are over and the fundamental challenges that the semiconductor industry faces at technology and device level will deeply affect the design of the next generations of integrated circuits and systems. The progressive scaling of CMOS transistors to achieve faster devices and higher circuit density has fueled the phenomenal success of the semiconductor industry – captured by Moore’s famous law [1]. Silicon technology has entered the nano CMOS era with 35-nm MOSFETs in mass production in the 45-nm technology generation. However, it is widely recognised that the increasing variability in the device characteristics is among the major challenges to scaling and integration for the present and next generation of nano CMOS transistors and circuits. Variability of transistor characteristics has become a major concern associated with CMOS transistors scaling and integration [2, 3]. It already critically affects SRAM scaling [4], and introduces leakage and timing issues in digital logic circuits [5]. The variability is the main factor restricting the scaling of the supply voltage, which for the last four technology generations has remained virtually constant, adding to the looming power crisis.

[1]  A. Asenov,et al.  Quantitative Evaluation of Statistical Variability Sources in a 45-nm Technological Node LP N-MOSFET , 2008, IEEE Electron Device Letters.

[2]  A. Asenov,et al.  Simulation of strain enhanced variability in nMOSFETs , 2008, 2008 9th International Conference on Ultimate Integration of Silicon.

[3]  A. Asenov,et al.  Intrinsic parameter fluctuations in decananometer MOSFETs introduced by gate line edge roughness , 2003 .

[4]  Kaustav Banerjee,et al.  Statistical modeling of metal-gate work-function variability in emerging device technologies and implications for circuit design , 2008, ICCAD 2008.

[5]  A. Asenov Random dopant induced threshold voltage lowering and fluctuations in sub-0.1 /spl mu/m MOSFET's: A 3-D "atomistic" simulation study , 1998 .

[6]  Nomura Masahiro,et al.  A Read-Static-Noise-Margin-Free SRAM cell for low-Vdd and High-speed applications , 2005 .

[7]  A. Asenov,et al.  Simulation Study of Individual and Combined Sources of Intrinsic Parameter Fluctuations in Conventional Nano-MOSFETs , 2006, IEEE Transactions on Electron Devices.

[8]  David Blaauw,et al.  Circuit optimization using statistical static timing analysis , 2005, Proceedings. 42nd Design Automation Conference, 2005..

[9]  S. Rauch,et al.  Review and Reexamination of Reliability Effects Related to NBTI-Induced Statistical Variations , 2007, IEEE Transactions on Device and Materials Reliability.

[10]  C. C. McAndrew Efficient statistical modeling for circuit simulation , 2004 .

[11]  K.J. Kuhn,et al.  Reducing Variation in Advanced Logic Technologies: Approaches to Process and Design for Manufacturability of Nanoscale CMOS , 2007, 2007 IEEE International Electron Devices Meeting.

[12]  A. Asenov,et al.  Poly-Si-Gate-Related Variability in Decananometer MOSFETs With Conventional Architecture , 2007, IEEE Transactions on Electron Devices.

[13]  Asen Asenov,et al.  The impact of random dopant effects on SRAM cells , 2004 .

[14]  Asen Asenov,et al.  Evaluation of statistical variability in 32 and 22 nm technology generation LSTP MOSFETs , 2009, ESSDERC 2009.

[15]  J. Stathis,et al.  The impact of gate-oxide breakdown on SRAM stability , 2002, IEEE Electron Device Letters.

[16]  Asen Asenov,et al.  A 3-D Atomistic Study of Archetypal Double Gate MOSFET Structures , 2002 .

[17]  A. Asenov,et al.  Origin of the Asymmetry in the Magnitude of the Statistical Variability of n- and p-Channel Poly-Si Gate Bulk MOSFETs , 2008, IEEE Electron Device Letters.

[18]  A. Visconti,et al.  Cycling Effect on the Random Telegraph Noise Instabilities of nor and nand Flash Arrays , 2008, IEEE Electron Device Letters.

[19]  Alan Mathewson,et al.  Relating statistical MOSFET model parameter variabilities to IC manufacturing process fluctuations enabling realistic worst case design , 1994 .

[20]  Asen Asenov,et al.  Three-dimensional statistical simulation of gate leakage fluctuations due to combined interface roughness and random dopants , 2007 .

[21]  T. Kudo,et al.  High performance 35 nm gate length CMOS with NO oxynitride gate dielectric and ni SALICIDE , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[22]  Olivier Joubert,et al.  Line edge roughness characterization with a three-dimensional atomic force microscope: Transfer during gate patterning processes , 2005 .

[23]  A. Asenov,et al.  Intrinsic threshold voltage fluctuations in decanano MOSFETs due to local oxide thickness variations , 2002 .

[24]  Kenneth E. Goodson,et al.  Temperature-Dependent Thermal Conductivity of Undoped Polycrystalline Silicon Layers , 2001 .

[25]  A. Asenov,et al.  Statistical aspects of reliability in bulk MOSFETs with multiple defect states and random discrete dopants , 2008, Microelectron. Reliab..

[26]  V. Huard,et al.  Interface trap generation and hole trapping under NBTI and PBTI in advanced CMOS technology with a 2-nm gate oxide , 2004, IEEE Transactions on Device and Materials Reliability.

[27]  A. Asenov,et al.  Impact of High-κ Gate Stacks on Transport and Variability in Nano-CMOS Devices , 2008 .

[28]  Asen Asenov,et al.  Low power, high density CMOS 6-T SRAM cell design subject to 'atomistic' fluctuations , 2007 .

[29]  Sani R. Nassif,et al.  High Performance CMOS Variability in the 65nm Regime and Beyond , 2006, 2007 IEEE International Electron Devices Meeting.

[30]  R.M.D.A. Velghe,et al.  CMOS device optimization for mixed-signal technologies , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[31]  Chenming Hu,et al.  Statistical Compact Modeling of Variations in Nano MOSFETs , 2008, 2008 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA).

[32]  K. Takeuchi,et al.  Statistical Compact Model Parameter Extraction by Direct Fitting to Variations , 2008, IEEE Transactions on Electron Devices.

[33]  S. Saini,et al.  Suppression of random dopant-induced threshold voltage fluctuations in sub-0.1-/spl mu/m MOSFET's with epitaxial and /spl delta/-doped channels , 1999 .

[34]  V. Huard,et al.  NBTI degradation: From transistor to SRAM arrays , 2008, 2008 IEEE International Reliability Physics Symposium.

[35]  Andrew B. Kahng,et al.  Subwavelength optical lithography: challenges and impact on physical design , 1999, ISPD '99.

[36]  S. Natarajan,et al.  Impact of negative bias temperature instability on digital circuit reliability , 2002, 2002 IEEE International Reliability Physics Symposium. Proceedings. 40th Annual (Cat. No.02CH37320).

[37]  Asen Asenov,et al.  Impact of intrinsic parameter fluctuations in decanano MOSFETs on yield and functionality of SRAM cells , 2005 .