The process of research investigations in artificial intelligence-a unified view

A number of research communities recognize artificial intelligence (AI) as a valid reference discipline. However, several papers have criticized AI's research methodologies. This paper attempts to clarify and improve the methods used in AI. Definitions are proposed for terms such as AI theory, principles, hypotheses, and observations. Next, a unified view of AI research methodology is proposed. This methodology contains a long term dimension based upon the scientific method and an individual project dimension. The individual project dimension identifies four strategies: hypothetical/deductive, hermeneutical/inductive, case-based, and historical analysis. The strategies differ according to how prototyping is used in an experiment. >

[1]  Adele E. Howe,et al.  How evaluation guides AI research , 1988 .

[2]  John R. Dixon,et al.  On research methodology towards a scientific theory of engineering design , 1987, Artificial Intelligence for Engineering Design, Analysis and Manufacturing.

[3]  D. Marr,et al.  Artificial Intelligence - A Personal View , 1976, Artif. Intell..

[4]  Robert G. Sargent Validation of simulation models , 1979, WSC '79.

[5]  T. Jick Mixing Qualitative and Quantitative Methods: Triangulation in Action. , 1979 .

[6]  Ron J. Patton,et al.  Methods for fault diagnosis in rail vehicle traction and braking systems , 1995 .

[7]  Paul R. Cohen,et al.  Toward AI research methodology: three case studies in evaluation , 1989, IEEE Trans. Syst. Man Cybern..

[8]  Michael L. Begeman,et al.  gIBIS: A tool for all reasons , 1989, JASIS.

[9]  Dennis F. Kibler,et al.  Differing Methodological Perspectives in Artificial Intelligence Research , 1985 .

[10]  Douglas B. Lenat,et al.  Theory Formation by Heuristic Search , 1983, Artificial Intelligence.

[11]  Derek Partridge Workshop on the Foundations of AI: Final Report , 1987, AI Mag..

[12]  David Kirsh,et al.  Foundations of AI: The Big Issues , 1991, Artif. Intell..

[13]  Michael L. Begeman,et al.  The right tool for the job , 1988 .

[14]  Allen Newell,et al.  The Knowledge Level , 1989, Artif. Intell..

[15]  Herbert A. Simon Artificial intelligence research strategies in the light of AI models of scientific discovery , 1979, IJCAI 1979.

[16]  Jon Doyle,et al.  Impediments to Universal Preference-Based Default Theories , 1989, KR.

[17]  Frank Blackler,et al.  QUALITATIVE RESEARCH AND PARADIGMS OF PRACTICE , 1983 .

[18]  F. K. Hanna,et al.  AM: A Case Study in AI Methodology , 1984, Artif. Intell..

[19]  Douglas B. Lenat,et al.  Why AM and EURISKO Appear to Work , 1984, Artif. Intell..

[20]  A. V. Napalkov,et al.  COMPUTERS AND THOUGHT, EDITED BY E. A. FEIGENBAUM AND J. FELDMAN, NEW YORK, MCGRAW-HILL, 1963: BOOK REVIEW, , 1967 .

[21]  Daniel E. O'Leary,et al.  VALIDATION OF EXPERT SYSTEMS- WITH APPLICATIONS TO AUDITING AND ACCOUNTING EXPERT SYSTEMS* , 1987 .

[22]  Douglas B. Lenat,et al.  EURISKO: A Program That Learns New Heuristics and Domain Concepts , 1983, Artif. Intell..

[23]  Allen Newell,et al.  A Preliminary Analysis of the Soar Architecture as a Basis for General Intelligence , 1991, Artif. Intell..

[24]  Todd G. Moody,et al.  Philosophy and Artificial Intelligence , 1992 .

[25]  R. Evered,et al.  Alternative Perspectives in the Organizational Sciences: “Inquiry from the Inside” and “Inquiry from the Outside” , 1981 .

[26]  Dirk Baldwin Applying multiple views to information systems: a preliminary framework , 1993, DATB.

[27]  Jean-Louis Malouin,et al.  Model validation in operations research , 1983 .

[28]  Thomas G. Dietterich,et al.  A Comparative Review of Selected Methods for Learning from Examples , 1983 .

[29]  W. Wallace The logic of science in sociology , 1971 .

[30]  John McCarthy,et al.  Generality in artificial intelligence , 1987, Resonance.

[31]  Gretchen Rossman,et al.  Numbers and Words , 1985 .

[32]  Nils J. Nilsson,et al.  Principles of Artificial Intelligence , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Roger S. Pressman,et al.  Software Engineering: A Practitioner's Approach , 1982 .

[34]  Douglas B. Lenat,et al.  The Nature of Heuristics , 1982, Artif. Intell..

[35]  Randall Davis,et al.  Expert Systems: Where Are We? And Where Do We Go from Here? , 1982, AI Mag..

[36]  Osman Balci,et al.  Credibility Assessment of Simulation Results: The State of the Art , 1986 .

[37]  Roger C. Schank,et al.  What Is AI, Anyway? , 1987, AI Mag..

[38]  Paul R. Cohen,et al.  A Survey of the Eighth National Conference on Artificial Intelligence: Pulling Together or Pulling Apart? , 1991, AI Mag..

[39]  Allen Newell,et al.  SOAR: An Architecture for General Intelligence , 1987, Artif. Intell..

[40]  Allen Newell,et al.  Intellectual issues in the history of artificial intelligence , 1983 .

[41]  Leonard Adelman,et al.  Experiments, quasi-experiments, and case studies: A review of empirical methods for evaluating decision support systems , 1991, IEEE Trans. Syst. Man Cybern..

[42]  William J. Clancey,et al.  The Epistemology of a Rule-Based Expert System - A Framework for Explanation , 1981, Artif. Intell..

[43]  Douglas B. Lenat,et al.  On the thresholds of knowledge , 1987, Proceedings of the International Workshop on Artificial Intelligence for Industrial Applications.

[44]  D. S. Baldwin Principles of design for a multiple viewpoint problem formation support system , 1990 .

[45]  Douglas B. Lenat,et al.  Computers and Thought Lecture: The Ubiquity of Discovery , 1977, IJCAI.

[46]  Dennis A. Gioia,et al.  Multiparadigm Perspectives on Theory Building , 1990 .

[47]  Raj Reddy,et al.  Foundations and grand challenges of artificial intelligence , 1988 .

[48]  Allen Newell,et al.  Computer science as empirical inquiry: symbols and search , 1976, CACM.