Divergence-Free SPH for Incompressible and Viscous Fluids

In this paper we present a novel Smoothed Particle Hydrodynamics (SPH) method for the efficient and stable simulation of incompressible fluids. The most efficient SPH-based approaches enforce incompressibility either on position or velocity level. However, the continuity equation for incompressible flow demands to maintain a constant density and a divergence-free velocity field. We propose a combination of two novel implicit pressure solvers enforcing both a low volume compression as well as a divergence-free velocity field. While a compression-free fluid is essential for realistic physical behavior, a divergence-free velocity field drastically reduces the number of required solver iterations and increases the stability of the simulation significantly. Thanks to the improved stability, our method can handle larger time steps than previous approaches. This results in a substantial performance gain since the computationally expensive neighborhood search has to be performed less frequently. Moreover, we introduce a third optional implicit solver to simulate highly viscous fluids which seamlessly integrates into our solver framework. Our implicit viscosity solver produces realistic results while introducing almost no numerical damping. We demonstrate the efficiency, robustness and scalability of our method in a variety of complex simulations including scenarios with millions of turbulent particles or highly viscous materials.

[1]  Philippe Beaudoin,et al.  Particle-based viscoelastic fluid simulation , 2005, SCA '05.

[2]  Matthias Teschner,et al.  SPH Fluids in Computer Graphics , 2014, Eurographics.

[3]  J. Monaghan,et al.  A Switch to Reduce SPH Viscosity , 1997 .

[4]  S. Cummins,et al.  An SPH Projection Method , 1999 .

[5]  James F. O'Brien,et al.  A method for animating viscoelastic fluids , 2004, ACM Trans. Graph..

[6]  Martin Servin,et al.  Constraint Fluids , 2012, IEEE Transactions on Visualization and Computer Graphics.

[7]  Robert Bridson,et al.  Animating sand as a fluid , 2005, ACM Trans. Graph..

[8]  Greg Turk,et al.  Melting and flowing , 2002, SCA '02.

[9]  Afonso Paiva,et al.  SPH Fluids for Viscous Jet Buckling , 2014, 2014 27th SIBGRAPI Conference on Graphics, Patterns and Images.

[10]  Yoshinori Dobashi,et al.  Volume preserving viscoelastic fluids with large deformations using position-based velocity corrections , 2014, The Visual Computer.

[11]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[12]  Ronald Fedkiw,et al.  Multiple interacting liquids , 2006, ACM Trans. Graph..

[13]  Mathieu Desbrun,et al.  Power particles , 2015, ACM Trans. Graph..

[14]  Miles Macklin,et al.  Position based fluids , 2013, ACM Trans. Graph..

[15]  Mathieu Desbrun,et al.  Smoothed particles: a new paradigm for animating highly deformable bodies , 1996 .

[16]  Adam W. Bargteil,et al.  A point-based method for animating elastoplastic solids , 2009, SCA '09.

[17]  E. Vouga,et al.  Discrete viscous threads , 2010, ACM Trans. Graph..

[18]  Greg Turk,et al.  Hybrid smoothed particle hydrodynamics , 2011, SCA '11.

[19]  Robert Bridson,et al.  Accurate viscous free surfaces for buckling, coiling, and rotating liquids , 2008, SCA '08.

[20]  Dimitris N. Metaxas,et al.  Realistic Animation of Liquids , 1996, Graphics Interface.

[21]  Sehoon Ha,et al.  Iterative Training of Dynamic Skills Inspired by Human Coaching Techniques , 2014, ACM Trans. Graph..

[22]  Markus H. Gross,et al.  Particle-based fluid simulation for interactive applications , 2003, SCA '03.

[23]  Matthias Teschner,et al.  Versatile surface tension and adhesion for SPH fluids , 2013, ACM Trans. Graph..

[24]  Ronald Fedkiw,et al.  Codimensional non-Newtonian fluids , 2015, ACM Trans. Graph..

[25]  Eitan Grinspun,et al.  Discrete viscous sheets , 2012, ACM Trans. Graph..

[26]  Matthias Teschner,et al.  A Parallel SPH Implementation on Multi‐Core CPUs , 2011, Comput. Graph. Forum.

[27]  Greg Turk,et al.  Fast viscoelastic behavior with thin features , 2008, ACM Trans. Graph..

[28]  R. Pajarola,et al.  Predictive-corrective incompressible SPH , 2009, SIGGRAPH 2009.

[29]  Leonidas J. Guibas,et al.  Adaptively sampled particle fluids , 2007, ACM Trans. Graph..

[30]  Matthias Teschner,et al.  Implicit Incompressible SPH , 2014, IEEE Transactions on Visualization and Computer Graphics.

[31]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[32]  Jessica K. Hodgins,et al.  A point-based method for animating incompressible flow , 2009, SCA '09.

[33]  Hongan Wang,et al.  Local Poisson SPH For Viscous Incompressible Fluids , 2012, Comput. Graph. Forum.

[34]  Huamin Wang,et al.  Robust Simulation of Sparsely Sampled Thin Features in SPH-Based Free Surface Flows , 2014, ACM Trans. Graph..

[35]  J. Monaghan Simulating Free Surface Flows with SPH , 1994 .

[36]  Ming C. Lin,et al.  Implicit Formulation for SPH‐based Viscous Fluids , 2015, Comput. Graph. Forum.

[37]  Duc Quang Nguyen,et al.  Directable photorealistic liquids , 2004, SCA '04.

[38]  Hans-Peter Seidel,et al.  Interactive by-example design of artistic packing layouts , 2013, ACM Trans. Graph..

[39]  Matthias Teschner,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Weakly Compressible Sph for Free Surface Flows , 2022 .

[40]  Derek Nowrouzezahrai,et al.  Learning hatching for pen-and-ink illustration of surfaces , 2012, TOGS.

[41]  Ronald Fedkiw,et al.  Practical animation of liquids , 2001, SIGGRAPH.

[42]  Nikolaus A. Adams,et al.  An incompressible multi-phase SPH method , 2007, J. Comput. Phys..

[43]  Robert Bridson,et al.  Fluid Simulation for Computer Graphics , 2008 .

[44]  Robert Bridson,et al.  Ghost SPH for animating water , 2012, ACM Trans. Graph..

[45]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[46]  J. Monaghan On the problem of penetration in particle methods , 1989 .

[47]  Nahyup Kang,et al.  Incompressible SPH using the Divergence‐Free Condition , 2014, Comput. Graph. Forum.

[48]  Christopher Wojtan,et al.  Highly adaptive liquid simulations on tetrahedral meshes , 2013, ACM Trans. Graph..

[49]  Ben Jones,et al.  Deformation embedding for point-based elastoplastic simulation , 2014, TOGS.

[50]  Matthias Teschner,et al.  An implicit viscosity formulation for SPH fluids , 2015, ACM Trans. Graph..

[51]  Christopher Batty,et al.  A simple finite volume method for adaptive viscous liquids , 2011, SCA '11.

[52]  Ross T. Whitaker,et al.  Particle‐Based Simulation of Fluids , 2003, Comput. Graph. Forum.

[53]  Afonso Paiva,et al.  Particle-based viscoplastic fluid/solid simulation , 2009, Comput. Aided Des..

[54]  Matthias Teschner,et al.  Versatile rigid-fluid coupling for incompressible SPH , 2012, ACM Trans. Graph..

[55]  Tomoyuki Nishita,et al.  Fast simulation of viscous fluids with elasticity and thermal conductivity using position-based dynamics , 2014, Comput. Graph..

[56]  Ronald Fedkiw,et al.  Two-Way Coupled SPH and Particle Level Set Fluid Simulation , 2008, IEEE Transactions on Visualization and Computer Graphics.

[57]  Afonso Paiva,et al.  Particle-based non-Newtonian fluid animation for melting objects , 2006, 2006 19th Brazilian Symposium on Computer Graphics and Image Processing.