The F0F1-type ATP synthases of bacteria: structure and function of the F0 complex.

Membrane-bound ATP synthases (F0F1-ATPases) of bacteria serve two important physiological functions. The enzyme catalyzes the synthesis of ATP from ADP and inorganic phosphate utilizing the energy of an electrochemical ion gradient. On the other hand, under conditions of low driving force, ATP synthases function as ATPases, thereby generating a transmembrane ion gradient at the expense of ATP hydrolysis. The enzyme complex consists of two structurally and functionally distinct parts: the membrane-integrated ion-translocating F0 complex and the peripheral F1 complex, which carries the catalytic sites for ATP synthesis and hydrolysis. The ATP synthase of Escherichia coli, which has been the most intensively studied one, is composed of eight different subunits, five of which belong to F1, subunits alpha, beta, gamma, delta, and epsilon (3:3:1:1:1), and three to F0, subunits a, b, and c (1:2:10 +/- 1). The similar overall structure and the high amino acid sequence homology indicate that the mechanism of ion translocation and catalysis and their mode of coupling is the same in all organisms.

[1]  E. Gogol Electron microscopy of the F1F0 ATP synthase: From structure to function , 1994, Microscopy research and technique.

[2]  M. Komatsu-Takaki Energy-dependent changes in conformation and catalytic activity of the chloroplast ATP synthase. , 1992, The Journal of biological chemistry.

[3]  M. Hensel,et al.  The ATP synthase (F1F0) of Streptomyces lividans: sequencing of the atp operon and phylogenetic considerations with subunit beta. , 1995, Gene.

[4]  A. E. Senior,et al.  Integration of F1 and the membrane sector of the proton-ATPase of Escherichia coli. Role of subunit "b" (uncF protein). , 1983, The Journal of biological chemistry.

[5]  T. Noumi,et al.  Escherichia coli H+-ATPase: Role of the δ subunit in binding F1 to the F0 sector , 1992 .

[6]  E. Schneider,et al.  Fo portion of Escherichia coli ATP synthase. Further resolution of trypsin-generated fragments from subunit b. , 1987, The Journal of biological chemistry.

[7]  P. Dimroth,et al.  Specific protection by Na+ or Li+ of the F1F0-ATPase of Propionigenium modestum from the reaction with dicyclohexylcarbodiimide. , 1993, The Journal of biological chemistry.

[8]  P. Friedl,et al.  Labeling of subunit b of the ATP synthase from Escherichia coli with a photoreactive phospholipid analogue. , 1983, The Journal of biological chemistry.

[9]  K. Altendorf,et al.  F0 part of the ATP synthase from Escherichia coli. Influence of subunits a, and b, on the structure of subunit c. , 1988, European journal of biochemistry.

[10]  E. Schneider,et al.  Bacterial adenosine 5'-triphosphate synthase (F1F0): purification and reconstitution of F0 complexes and biochemical and functional characterization of their subunits. , 1987, Microbiological reviews.

[11]  T. Stevens,et al.  Vma22p Is a Novel Endoplasmic Reticulum-associated Protein Required for Assembly of the Yeast Vacuolar H+-ATPase Complex (*) , 1995, The Journal of Biological Chemistry.

[12]  R. H. Fillingame,et al.  Essential residues in the polar loop region of subunit c of Escherichia coli F1F0 ATP synthase defined by random oligonucleotide-primed mutagenesis , 1991, Journal of bacteriology.

[13]  R. H. Fillingame,et al.  Stoichiometry of subunits in the H+-ATPase complex of Escherichia coli. , 1982, The Journal of biological chemistry.

[14]  P. Nagley Eukaryote membrane genetics: the Fo sector of mitochondrial ATP synthase. , 1988, Trends in genetics : TIG.

[15]  G. von Heijne,et al.  Sequence determinants of cytosolic N-terminal protein processing. , 1986, European journal of biochemistry.

[16]  F. Dahlquist,et al.  Structural features of the ε subunit of the Escherichia coli ATP synthase determined by NMR spectroscopy , 1995, Nature Structural Biology.

[17]  R. H. Fillingame,et al.  Suppressor mutations in F1 subunit epsilon recouple ATP-driven H+ translocation in uncoupled Q42E subunit c mutant of Escherichia coli F1F0 ATP synthase. , 1994, The Journal of biological chemistry.

[18]  V. Müller,et al.  Delta mu Na+ drives the synthesis of ATP via an delta mu Na(+)-translocating F1F0-ATP synthase in membrane vesicles of the archaeon Methanosarcina mazei Gö1 , 1994, Journal of bacteriology.

[19]  R. H. Fillingame,et al.  Use of lambda unc transducing bacteriophages in genetic and biochemical characterization of H+-ATPase mutants of Escherichia coli , 1983, Journal of bacteriology.

[20]  A. E. Senior,et al.  Defective energy coupling in delta-subunit mutants of Escherichia coli F1F0-ATP synthase. , 1994, The Journal of biological chemistry.

[21]  K. Myambo,et al.  Processing of the initiation methionine from proteins: properties of the Escherichia coli methionine aminopeptidase and its gene structure , 1987, Journal of bacteriology.

[22]  Differentiation of catalytic sites on Escherichia coli F1ATPase by laser photoactivated labeling with [3H]-2-Azido-ATP using the mutant beta Glu381Cys:epsilonSer108Cys to identify different beta subunits by their interactions with gamma and epsilon subunits. , 1996, Biochemistry.

[23]  M Futai,et al.  Fo portion of Escherichia coli H+-ATPase. Carboxyl-terminal region of the b subunit is essential for assembly of functional Fo. , 1988, The Journal of biological chemistry.

[24]  M. Futai,et al.  Role of the carboxyl terminal region of H(+)-ATPase (F0F1) a subunit from Escherichia coli. , 1991, Archives of biochemistry and biophysics.

[25]  Jan Pieter Abrahams,et al.  Structure at 2.8 Â resolution of F1-ATPase from bovine heart mitochondria , 1994, Nature.

[26]  M. Futai,et al.  The gamma subunit of the Escherichia coli ATP synthase. Mutations in the carboxyl-terminal region restore energy coupling to the amino-terminal mutant gamma Met-23-->Lys. , 1993, The Journal of biological chemistry.

[27]  K. Altendorf,et al.  Substitution of the cysteinyl residue (Cys21) of subunit b of the ATP synthase from Escherichia coli. , 1991, European journal of biochemistry.

[28]  P. Dimroth,et al.  Kinetics of inactivation of the F1Fo ATPase of Propionigenium modestum by dicyclohexylcarbodiimide in relationship to H+ and Na+ concentration: probing the binding site for the coupling ions. , 1993, Biochemistry.

[29]  T. Yoshizawa,et al.  Water structural changes in the bacteriorhodopsin photocycle: analysis by Fourier transform infrared spectroscopy. , 1992, Biochemistry.

[30]  J. Lanyi,et al.  A linkage of the pKa's of asp-85 and glu-204 forms part of the reprotonation switch of bacteriorhodopsin. , 1996, Biochemistry.

[31]  M. Komatsu-Takaki Energizing effects of illumination on the reactivities of lysine residues of the gamma subunit of chloroplast ATP synthase. , 1996, European journal of biochemistry.

[32]  K. Solomon,et al.  Effect of an uncE ribosome-binding site mutation on the synthesis and assembly of the Escherichia coli proton-translocating ATPase. , 1988, The Journal of biological chemistry.

[33]  A. E. Senior,et al.  Mutations in the uncE gene affecting assembly of the c-subunit of the adenosine triphosphatase of Escherichia coli. , 1983, Biochemical Journal.

[34]  U. Lücken,et al.  The stalk connecting the F1 and F0 domains of ATP synthase visualized by electron microscopy of unstained specimens , 1987, FEBS letters.

[35]  T. Stevens,et al.  Vma21p is a yeast membrane protein retained in the endoplasmic reticulum by a di-lysine motif and is required for the assembly of the vacuolar H(+)-ATPase complex. , 1994, Molecular biology of the cell.

[36]  R. Capaldi,et al.  Characterization of the Interface between and Subunits of Escherichia coli F-ATPase (*) , 1996, The Journal of Biological Chemistry.

[37]  R. D. Simoni,et al.  Deletions in hydrophilic domains of subunit a from the Escherichia coli F1F0-ATP synthase interfere with membrane insertion or F0 assembly. , 1992, The Journal of biological chemistry.

[38]  E. Schneider,et al.  Modification of subunit b of the F0 complex from Escherichia coli ATP synthase by a hydrophobic maleimide and its effects on F0 functions. , 1985, European journal of biochemistry.

[39]  W. DeGrado,et al.  Synthetic amphiphilic peptide models for protein ion channels. , 1988, Science.

[40]  S. Howitt,et al.  Second-site revertants of an arginine-210 to lysine mutation in the a subunit of the F0F1-ATPase from Escherichia coli: implications for structure. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[41]  R. Aggeler,et al.  Arrangement of the epsilon subunit in the Escherichia coli ATP synthase from the reactivity of cysteine residues introduced at different positions in this subunit. , 1995, Biochimica et biophysica acta.

[42]  R. Aggeler,et al.  Disulfide Bond Formation between the COOH-terminal Domain of the Subunits and the and Subunits of the Escherichia coli F-ATPase , 1995, The Journal of Biological Chemistry.

[43]  R. H. Fillingame,et al.  H+-ATPase activity of Escherichia coli F1F0 is blocked after reaction of dicyclohexylcarbodiimide with a single proteolipid (subunit c) of the F0 complex. , 1989, The Journal of biological chemistry.

[44]  R. Wagner,et al.  Cation channels by subunit III of the channel portion of the chloroplast H+‐ATPase , 1989 .

[45]  C. Kumamoto,et al.  Genetic evidence for interaction between the a and b subunits of the F0 portion of the Escherichia coli proton translocating ATPase. , 1986, The Journal of biological chemistry.

[46]  R. H. Fillingame,et al.  Mutation of alanine 24 to serine in subunit c of the Escherichia coli F1F0-ATP synthase reduces reactivity of aspartyl 61 with dicyclohexylcarbodiimide. , 1991, The Journal of biological chemistry.

[47]  K. Altendorf,et al.  ATP synthesis energized by delta pNa and delta psi in proteoliposomes containing the F0F1-ATPase from Propionigenium modestum. , 1993, Journal of Biological Chemistry.

[48]  M. Girvin,et al.  Helical structure and folding of subunit c of F1F0 ATP synthase: 1H NMR resonance assignments and NOE analysis. , 1993, Biochemistry.

[49]  S. Vik,et al.  A mechanism of proton translocation by F1F0 ATP synthases suggested by double mutants of the a subunit. , 1994, The Journal of biological chemistry.

[50]  S. Dunn,et al.  Determination of the 1-ethyl-3-[(3-dimethylamino)propyl]-carbodiimide- induced cross-link between the beta and epsilon subunits of Escherichia coli F1-ATPase. , 1992, The Journal of biological chemistry.

[51]  R. E. Mccarty,et al.  Energy-dependent changes in the conformation of the epsilon subunit of the chloroplast ATP synthase. , 1987, The Journal of biological chemistry.

[52]  G. Groth,et al.  Proton slip of the chloroplast ATPase: its nucleotide dependence, energetic threshold, and relation to an alternating site mechanism of catalysis. , 1993, Biochemistry.

[53]  R. Capaldi,et al.  Nucleotide-dependent and dicyclohexylcarbodiimide-sensitive conformational changes in the epsilon subunit of Escherichia coli ATP synthase. , 1991, Biochemistry.

[54]  B. Cain,et al.  Second-site suppressor mutations at glycine 218 and histidine 245 in the alpha subunit of F1F0 ATP synthase in Escherichia coli. , 1994, The Journal of biological chemistry.

[55]  S. Dunn A barrel in the stalk , 1995, Nature Structural Biology.

[56]  N. Nelson Evolution of organellar proton-ATPases. , 1992, Biochimica et biophysica acta.

[57]  J. Aris,et al.  Cross-linking and labeling of the Escherichia coli F1F0-ATP synthase reveal a compact hydrophilic portion of F0 close to an F1 catalytic subunit. , 1983, The Journal of biological chemistry.

[58]  R. Gunsalus,et al.  Membrane integration and function of the three F0 subunits of the ATP synthase of Escherichia coli K12. , 1983, The EMBO journal.

[59]  V. Müller,et al.  Purification of ATP synthase from Acetobacterium woodii and identification as a Na(+)-translocating F1F0-type enzyme. , 1994, European journal of biochemistry.

[60]  K. Altendorf,et al.  Influence of subunit-specific antibodies on the activity of the F0 complex of the ATP synthase of Escherichia coli. I. Effects of subunit b-specific polyclonal antibodies. , 1992, The Journal of biological chemistry.

[61]  D. Parry,et al.  α‐Helical coiled coils and bundles: How to design an α‐helical protein , 1990 .

[62]  Christian Bjørbæk,et al.  The transmembrane topology of the α subunit from the ATPase in Escherichia coli analyzed by PhoA protein fusions , 1990 .

[63]  D. Oesterhelt,et al.  Experimental evidence for hydrogen-bonded network proton transfer in bacteriorhodopsin shown by Fourier-transform infrared spectroscopy using azide as catalyst. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[64]  Berend Tolner,et al.  Cation‐selectivity of the l‐glutamate transporters of Escherichia coli, Bacillus stearothermophilus and Bacillus caldotenax: dependence on the environment in which the proteins are expressed , 1995, Molecular microbiology.

[65]  A. E. Senior The proton-translocating ATPase of Escherichia coli. , 1990, Annual review of biophysics and biophysical chemistry.

[66]  W. Sebald,et al.  Identification of amino-acid substitutions in the proteolipid subunit of the ATP synthase from dicyclohexylcarbodiimide-resistant mutants of Escherichia coli. , 1980, European journal of biochemistry.

[67]  P. Dimroth,et al.  Construction, expression and characterization of a plasmid-encoded Na(+)-specific ATPase hybrid consisting of Propionigenium modestum F0-ATPase and Escherichia coli F1-ATPase. , 1994, European journal of biochemistry.

[68]  S. Vik,et al.  Single amino acid insertions probe the alpha subunit of the Escherichia coli F1F0-ATP synthase. , 1994, The Journal of biological chemistry.

[69]  M. Girvin,et al.  Organization of the F0 sector of Escherichia coli H+-ATPase: the polar loop region of subunit c extends from the cytoplasmic face of the membrane. , 1989, Biochemistry.

[70]  P. Friedl,et al.  The topology of the proton translocating F0 component of the ATP synthase from E. coli K12: studies with proteases. , 1983, The EMBO journal.

[71]  K. Altendorf,et al.  Characterization of mutations in the b subunit of F1F0 ATP synthase in Escherichia coli. , 1993, The Journal of biological chemistry.

[72]  M. Girvin,et al.  Hairpin folding of subunit c of F1Fo ATP synthase: 1H distance measurements to nitroxide-derivatized aspartyl-61. , 1994, Biochemistry.

[73]  D. Sheppard,et al.  The Human Integrin α8β1 Functions as a Receptor for Tenascin, Fibronectin, and Vitronectin (*) , 1995, The Journal of Biological Chemistry.

[74]  P. Dimroth,et al.  Characterization of the ATP synthase of Propionigenium modestum as a primary sodium pump. , 1988, Biochemistry.

[75]  M. Finbow,et al.  Ductin – a proton pump component, a gap junction channel and a neurotransmitter release channel , 1995, BioEssays : news and reviews in molecular, cellular and developmental biology.

[76]  R. H. Fillingame,et al.  Reconstitution of the F0 Complex of Escherichia coll ATP Synthase from Isolated Subunits , 1995 .

[77]  G. Heijne Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. , 1992, Journal of molecular biology.

[78]  K. Yokoyama,et al.  Isolation of prokaryotic V0V1-ATPase from a thermophilic eubacterium Thermus thermophilus. , 1994, The Journal of biological chemistry.

[79]  J. Walker,et al.  The delta- and epsilon-subunits of bovine F1-ATPase interact to form a heterodimeric subcomplex. , 1996, The Biochemical journal.

[80]  I. Yamato,et al.  Cloning and sequencing of the genes coding for the A and B subunits of vacuolar-type Na(+)-ATPase from Enterococcus hirae. Coexistence of vacuolar- and F0F1-type ATPases in one bacterial cell. , 1993, The Journal of biological chemistry.

[81]  Gabriele Deckers-Hebestreit,et al.  The F0 complex of the Escherichia coli ATP synthase. Investigation by electron spectroscopic imaging and immunoelectron microscopy. , 1995, European journal of biochemistry.

[82]  K. Altendorf,et al.  The Fo complex of the proton-translocating F-type ATPase of Escherichia coli. , 1992, The Journal of experimental biology.

[83]  E. Schneider,et al.  All three subunits are required for the reconstitution of an active proton channel (F0) of Escherichia coli ATP synthase (F1F0). , 1985, The EMBO journal.

[84]  S. Dunn The polar domain of the b subunit of Escherichia coli F1F0-ATPase forms an elongated dimer that interacts with the F1 sector. , 1992, The Journal of biological chemistry.

[85]  G. Cox,et al.  The mechanism of ATP synthase: a reassessment of the functions of the b and a subunits. , 1986, Biochimica et biophysica acta.

[86]  B. Cain,et al.  Interaction between Glu-219 and His-245 within the a subunit of F1F0-ATPase in Escherichia coli. , 1988, The Journal of biological chemistry.

[87]  R. H. Fillingame,et al.  Mutations in the conserved proline 43 residue of the uncE protein (subunit c) of Escherichia coli F1F0-ATPase alter the coupling of F1 to F0. , 1989, The Journal of biological chemistry.

[88]  Y. Kakinuma,et al.  Electrogenic Na+ transport by Enterococcus hirae Na+‐ATPase , 1995, FEBS Letters.

[89]  M. Girvin,et al.  Correlations of Structure and Function in H+ Translocating Subunit c of F1F0 ATP Synthase a , 1992, Annals of the New York Academy of Sciences.

[90]  G Büldt,et al.  Water molecules and exchangeable hydrogen ions at the active centre of bacteriorhodopsin localized by neutron diffraction. Elements of the proton pathway? , 1990, Journal of molecular biology.

[91]  Y. Zhang,et al.  Changing the Ion Binding Specificity of the Escherichia coli H-transporting ATP Synthase by Directed Mutagenesis of Subunit c(*) , 1995, The Journal of Biological Chemistry.

[92]  R. H. Fillingame,et al.  Conserved polar loop region of Escherichia coli subunit c of the F1F0 H+-ATPase. Glutamine 42 is not absolutely essential, but substitutions alter binding and coupling of F1 to F0. , 1989, The Journal of biological chemistry.

[93]  M. Mandel,et al.  cDNA sequence encoding the 16-kDa proteolipid of chromaffin granules implies gene duplication in the evolution of H+-ATPases. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[94]  P. Dimroth,et al.  The sodium ion translocating adenosinetriphosphatase of Propionigenium modestum pumps protons at low sodium ion concentrations. , 1989, Biochemistry.

[95]  D. K. Hsu,et al.  Use of lacZ fusions to measure in vivo expression of the first three genes of the Escherichia coli unc operon , 1989, Journal of bacteriology.

[96]  M. Hensel,et al.  Orientation of subunit c of the ATP synthase of Escherichia coli--a study with peptide-specific antibodies. , 1990, Biochimica et biophysica acta.

[97]  K. Altendorf,et al.  ATP synthesis catalyzed by the ATP synthase of Escherichia coli reconstituted into liposomes. , 1994, European journal of biochemistry.

[98]  A. E. Senior,et al.  Functional effects and cross-reactivity of antibody to purified subunit b (uncF protein) of Escherichia coli proton-ATPase. , 1985, Archives of biochemistry and biophysics.

[99]  K. Altendorf,et al.  A hybrid adenosinetriphosphatase composed of F1 of Escherichia coli and F0 of Propionigenium modestum is a functional sodium ion pump. , 1990, Biochemistry.

[100]  P. Boyer,et al.  The binding change mechanism for ATP synthase--some probabilities and possibilities. , 1993, Biochimica et biophysica acta.

[101]  R. L. Cross,et al.  Gene duplication as a means for altering H+/ATP ratios during the evolution of Fo F1 ATPases and synthases , 1990, FEBS letters.

[102]  D. Deamer,et al.  Proton conductance by the gramicidin water wire. Model for proton conductance in the F1F0 ATPases? , 1991, Biophysical journal.

[103]  R. D. Simoni,et al.  A topological analysis of subunit alpha from Escherichia coli F1F0-ATP synthase predicts eight transmembrane segments. , 1990, The Journal of biological chemistry.

[104]  M. Saraste,et al.  E. coli F1-ATPase interacts with a membrane protein component of a proton channel , 1982, Nature.

[105]  Y. Zhang,et al.  The γ subunit in the Escherichia coli ATP synthase complex (ECF1F0) extends through the stalk and contacts the c subunits of the F0 part , 1995, FEBS letters.

[106]  M. Futai,et al.  The ATP synthase gamma subunit. Suppressor mutagenesis reveals three helical regions involved in energy coupling. , 1995, The Journal of biological chemistry.

[107]  A. Majerník,et al.  The presence of H+ and Na+‐translocating ATPases in Methanobacterium thermoautotrophicum and their possible function under alkaline conditions , 1995, FEBS letters.

[108]  S. Howitt,et al.  The proton pore in the Escherichia coli F0F1-ATPase: substitution of glutamate by glutamine at position 219 of the alpha-subunit prevents F0-mediated proton permeability. , 1988, Biochimica et biophysica acta.

[109]  R. Capaldi,et al.  Structure-function relationships of domains of the delta subunit in Escherichia coli adenosine triphosphatase. , 1991, Biochimica et biophysica acta.

[110]  V. V. Bulygin,et al.  Rotation of subunits during catalysis by Escherichia coli F1-ATPase. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[111]  W. Sebald,et al.  Labeling of individual amino acid residues in the membrane-embedded F0 part of the F1 F0 ATP synthase from Neurospora crassa. Influence of oligomycin and dicyclohexylcarbodiimide. , 1986, European Journal of Biochemistry.

[112]  R. H. Fillingame,et al.  Proton-translocating carboxyl of subunit c of F1Fo H(+)-ATP synthase: the unique environment suggested by the pKa determined by 1H NMR. , 1995, Biochemistry.

[113]  O. Schwarz,et al.  The H+/ATP coupling ratio of the ATP synthase from thiol‐modulated chloroplasts and two cyanobacterial strains is four , 1996, FEBS letters.

[114]  R. H. Fillingame,et al.  Transmembrane helix-helix interactions in F0 suggested by suppressor mutations to Ala24-->Asp/Asp61-->Gly mutant of ATP synthase subunit. , 1994, The Journal of biological chemistry.

[115]  L. Hatch,et al.  The role of arginine in the conserved polar loop of the c-subunit of the Escherichia coli H(+)-ATPase. , 1993, Biochimica et biophysica acta.

[116]  K. Altendorf,et al.  Overproduction and purification of the uncI gene product of the ATP synthase of Escherichia coli. , 1990, The Journal of biological chemistry.

[117]  P. Dimroth,et al.  Formation of a functionally active sodium-translocating hybrid F1F0 ATPase in Escherichia coli by homologous recombination. , 1993, European journal of biochemistry.

[118]  P. Dimroth,et al.  A double mutation in subunit c of the Na(+)-specific F1F0-ATPase of Propionigenium modestum results in a switch from Na+ to H(+)-coupled ATP synthesis in the Escherichia coli host cells. , 1995, Journal of molecular biology.

[119]  R. H. Fillingame CHAPTER 12 – Molecular Mechanics of ATP Synthesis by F1F0-Type H+ -Transporting ATP Synthases , 1990 .

[120]  S. Dunn,et al.  A cryoelectron microscopy study of the interaction of the Escherichia coli F1‐ATPase with subunit b dimer , 1994, FEBS letters.

[121]  S. Howitt,et al.  The Essential Arginine Residue at Position 210 in the a Subunit of the Escherichia coli ATP Synthase Can Be Transferred to Position 252 with Partial Retention of Activity * , 1995, The Journal of Biological Chemistry.

[122]  J. Findlay,et al.  Evidence for a common structure for a class of membrane channels. , 1993, European journal of biochemistry.

[123]  The alpha/beta subunit interaction in H(+)-ATPase (ATP synthase). An Escherichia coli alpha subunit mutation (Arg-alpha 296-->Cys) restores coupling efficiency to the deleterious beta subunit mutant (Ser-beta 174-->Phe). , 1994, The Journal of biological chemistry.

[124]  B. Cain,et al.  Mutagenesis of the alpha subunit of the F1Fo-ATPase from Escherichia coli. Mutations at Glu-196, Pro-190, and Ser-199. , 1988, The Journal of biological chemistry.

[125]  S. Vik,et al.  Prediction of transmembrane topology of F0 proteins from Escherichia coli F1F0 ATP synthase using variational and hydrophobic moment analyses. , 1992, Biochimica et biophysica acta.

[126]  S. Howitt,et al.  The proton pore in the Escherichia coli F0F1-ATPase: a requirement for arginine at position 210 of the a-subunit. , 1987, Biochimica et biophysica acta.

[127]  M. Girvin,et al.  Determination of local protein structure by spin label difference 2D NMR: the region neighboring Asp61 of subunit c of the F1F0 ATP synthase. , 1994, Biochemistry.

[128]  P. Dimroth,et al.  Studies on sodium and hydrogen ion translocation through the F0 part of the sodium-translocating F1F0 ATPase from Propionigenium modestum: discovery of a membrane potential dependent step , 1992 .

[129]  W. Sebald,et al.  Topological studies suggest that the pathway of the protons through F0 is provided by amino acid residues accessible from the lipid phase. , 1986, Biochimie.

[130]  K. Altendorf,et al.  Detection and localization of thei protein inEscherichia coli cells using antibodies , 1991, FEBS letters.

[131]  R. H. Fillingame,et al.  Assembly of F0 Sector of Escherichia coli H+ ATP Synthase , 1995, The Journal of Biological Chemistry.

[132]  E. Eliopoulos,et al.  Structure of a 16 kDa integral membrane protein that has identity to the putative proton channel of the vacuolar H(+)-ATPase. , 1992, Protein engineering.

[133]  Subunit III of the chloroplast ATP‐synthase can form a Ca2+‐binding site on the lumenal side of the thylakoid membrane , 1993, FEBS letters.

[134]  J. Gallant,et al.  Topology, organization, and function of the psi subunit in the F0 sector of the H+-ATPase of Escherichia coli. , 1983, The Journal of biological chemistry.

[135]  R. H. Fillingame,et al.  The essential carboxyl group in subunit c of the F1F0 ATP synthase can be moved and H(+)-translocating function retained. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[136]  B. Cain,et al.  Targeted mutagenesis of the b subunit of F1F0 ATP synthase in Escherichia coli: Glu-77 through Gln-85 , 1991, Journal of bacteriology.

[137]  M. A. Haughton,et al.  Asymmetry of Escherichia coli F1-ATPase as a Function of the Interaction of α-β Subunit Pairs with the γ and ε Subunits (*) , 1995, The Journal of Biological Chemistry.

[138]  H. Penefsky Mechanism of inhibition of mitochondrial adenosine triphosphatase by dicyclohexylcarbodiimide and oligomycin: relationship to ATP synthesis. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[139]  R. H. Fillingame,et al.  Mutations in three of the putative transmembrane helices of subunit a of the Escherichia coli F1F0-ATPase disrupt ATP-driven proton translocation. , 1989, Archives of biochemistry and biophysics.

[140]  The F0 complex of the Escherichia coli ATP synthase. Investigation by electron spectroscopic imaging and immunoelectron microscopy. , 1995, European journal of biochemistry.

[141]  R. Aggeler,et al.  Coupling between catalytic sites and the proton channel in F1F0-type ATPases. , 1994, Trends in biochemical sciences.

[142]  K. Altendorf,et al.  The F0 complex of the ATP synthase of Escherichia coli contains a proton pathway with large proton polarizability caused by collective proton fluctuation. , 1995, Biophysical journal.

[143]  B. Brzeziński,et al.  Proton Polarizability of Hydrogen Bonded Systems Due to Collective Proton Motion — with a Remark to the Proton Pathways in Bacteriorhodopsin , 1992 .

[144]  S. Dunn,et al.  The NH2-terminal portion of the alpha subunit of Escherichia coli F1 ATPase is required for binding the delta subunit. , 1980, The Journal of biological chemistry.

[145]  J. Deisenhofer,et al.  Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution , 1985, Nature.

[146]  H. Strotmann,et al.  PROTON GRADIENT-INDUCED CHANGES OF THE INTERACTION BETWEEN CF0 AND CF1 AS PROBED BY CLEAVAGE WITH NASCN , 1994 .

[147]  D. Jans,et al.  The F1F0-ATPase of Escherichia coli. The substitution of alanine by threonine at position 25 in the c-subunit affects function but not assembly. , 1989, Biochimica et biophysica acta.

[148]  R. E. Mccarty,et al.  Aspects of Subunit Interactions in the Chloroplast ATP Synthase (I. Isolation of a Chloroplast Coupling Factor 1-Subunit III Complex from Spinach Thylakoids) , 1993, Plant physiology.

[149]  B. Cain,et al.  Proton translocation by the F1F0ATPase of Escherichia coli. Mutagenic analysis of the a subunit. , 1989, The Journal of biological chemistry.

[150]  S. Howitt,et al.  Mutational analysis of the function of the a-subunit of the F0F1-APPase of Escherichia coli. , 1990, Biochimica et biophysica acta.

[151]  R. H. Fillingame,et al.  Arginine 41 of subunit c of Escherichia coli H(+)-ATP synthase is essential in binding and coupling of F1 to F0. , 1994, The Journal of biological chemistry.

[152]  Translation of the first gene of the Escherichia coli unc operon. Selection of the start codon and control of initiation efficiency. , 1991, The Journal of biological chemistry.

[153]  R. Capaldi,et al.  Catalytic site nucleotide and inorganic phosphate dependence of the conformation of the epsilon subunit in Escherichia coli adenosinetriphosphatase. , 1991, Biochemistry.

[154]  Y. Zhang,et al.  Subunits Coupling H+ Transport and ATP Synthesis in the Escherichia coli ATP Synthase , 1995, The Journal of Biological Chemistry.

[155]  J. Olejnik,et al.  A proton pathway with large proton polarizability and the proton pumping mechanism in bacteriorhodopsin — Fourier transform difference spectra of photoproducts of bacteriorhodopsin and of its pentademethyl analogue , 1992 .

[156]  R. H. Fillingame,et al.  H+-ATPase of Escherichia coli. An uncE mutation impairing coupling between F1 and Fo but not Fo-mediated H+ translocation. , 1985, The Journal of biological chemistry.

[157]  R. Henderson,et al.  Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. , 1990, Journal of molecular biology.

[158]  G. Groth,et al.  ATP synthase of chloroplasts: selective action of agents binding to F1 on partial reactions of proton transfer in F0. , 1995, Biochemistry.

[159]  K. Altendorf,et al.  F0 portion of Escherichia coli ATP synthase: orientation of subunit c in the membrane. , 1987, Biochemistry.

[160]  R. H. Fillingame H+ transport and coupling by the F0 sector of the ATP synthase: Insights into the molecular mechanism of function , 1992, Journal of bioenergetics and biomembranes.

[161]  E. Schneider,et al.  Subunit b of the membrane moiety (F0) of ATP synthase (F1F0) from Escherichia coli is indispensable for H+ translocation and binding of the water-soluble F1 moiety. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[162]  H. Hama,et al.  Replacement of alanine 58 by asparagine enables the melibiose carrier of Klebsiella pneumoniae to couple sugar transport to Na+. , 1994, The Journal of biological chemistry.

[163]  J. Brunner,et al.  Structure of the membrane-embedded F0 part of F1F0 ATP synthase from Escherichia coli as inferred from labeling with 3-(Trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine. , 1984, Biochemistry.

[164]  R H Fillingame,et al.  Essential aspartate in subunit c of F1F0 ATP synthase. Effect of position 61 substitutions in helix-2 on function of Asp24 in helix-1. , 1994, The Journal of biological chemistry.

[165]  J. Abrahams,et al.  Inherent asymmetry of the structure of F1‐ATPase from bovine heart mitochondria at 6.5 A resolution. , 1993, The EMBO journal.

[166]  J. Walker,et al.  The unc operon. Nucleotide sequence, regulation and structure of ATP-synthase. , 1984, Biochimica et biophysica acta.

[167]  S. Vik,et al.  Mutations at Glu-32 and His-39 in the epsilon subunit of the Escherichia coli F1F0 ATP synthase affect its inhibitory properties , 1992, Journal of bacteriology.

[168]  K. Süss Neighbouring subunits of CF0 and between CF1 and CF0 of the soluble chloroplast ATP synthase (CF1‐CF0) as revealed by chemical protein cross‐linking , 1986 .

[169]  G. Groth,et al.  ATP synthase: activating versus catalytic proton transfer , 1995, FEBS letters.

[170]  B. Cain,et al.  Impaired proton conductivity resulting from mutations in the a subunit of F1F0 ATPase in Escherichia coli. , 1986, Journal of Biological Chemistry.

[171]  G. Chiang,et al.  Calcium-dependent interaction of chlorpromazine with the chloroplast 8-kilodalton CF0 protein and calcium gating of H+ fluxes between thylakoid membrane domains and the lumen. , 1992, Biochemistry.