Simulation in exponential families
暂无分享,去创建一个
[1] M. Iltis,et al. Sharp asymptotics of large deviations in ℝd , 1995 .
[2] R. Serfling. Approximation Theorems of Mathematical Statistics , 1980 .
[3] Noel A Cressie,et al. Statistics for Spatial Data. , 1992 .
[4] M. Broniatowski,et al. Tauberian Theorems, Chernoff Inequality, and the Tail Behavior of Finite Convolutions of Distribution Functions , 1995 .
[5] Ing Rj Ser. Approximation Theorems of Mathematical Statistics , 1980 .
[6] L. Goddard. Approximation of Functions , 1965, Nature.
[7] M. Birman,et al. PIECEWISE-POLYNOMIAL APPROXIMATIONS OF FUNCTIONS OF THE CLASSES $ W_{p}^{\alpha}$ , 1967 .
[8] J. Lamperti. ON CONVERGENCE OF STOCHASTIC PROCESSES , 1962 .
[9] Christian P. Robert,et al. L'analyse statistique bayésienne , 1993 .
[10] O. Barndorff-Nielsen. Information And Exponential Families , 1970 .
[11] L. Devroye. Non-Uniform Random Variate Generation , 1986 .
[12] M. Meerschaert. Regular Variation in R k , 1988 .
[13] A. Kolmogorov,et al. Entropy and "-capacity of sets in func-tional spaces , 1961 .
[14] D. Pollard. Empirical Processes: Theory and Applications , 1990 .
[15] W. Gilks,et al. Adaptive Rejection Sampling for Gibbs Sampling , 1992 .
[16] R. Loynes. CONTIGUITY OF PROBABILITY MEASURES: SOME APPLICATIONS IN STATISTICS , 1974 .
[17] Adrian F. M. Smith,et al. Bayesian Inference for Generalized Linear and Proportional Hazards Models Via Gibbs Sampling , 1993 .
[18] H. Teicher,et al. Probability theory: Independence, interchangeability, martingales , 1978 .
[19] A. Dembo,et al. Large Deviation Techniques and Applications. , 1994 .
[20] J. S. Sadowsky,et al. Large deviations theory techniques in Monte Carlo simulation , 1989, WSC '89.
[21] George G. Roussas,et al. Contiguity of probability measures: some applications in statistics: Preface , 1972 .
[22] David Haussler,et al. Sphere Packing Numbers for Subsets of the Boolean n-Cube with Bounded Vapnik-Chervonenkis Dimension , 1995, J. Comb. Theory, Ser. A.
[23] J. F. C. Kingman,et al. Information and Exponential Families in Statistical Theory , 1980 .
[24] Robert Haining,et al. Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .
[25] G. Lorentz. Approximation of Functions , 1966 .
[26] Adrian F. M. Smith,et al. Sampling-Based Approaches to Calculating Marginal Densities , 1990 .
[27] M. Talagrand. Concentration of measure and isoperimetric inequalities in product spaces , 1994, math/9406212.
[28] J. Berger,et al. The Intrinsic Bayes Factor for Model Selection and Prediction , 1996 .
[29] L. Brown. Fundamentals of statistical exponential families: with applications in statistical decision theory , 1986 .