Simulation in exponential families

An acceptance-rejection algorithm for the simulation of random variables in statistical exponential families is described. This algorithm does not require any prior knowledge of the family, except sufficient stati stics and the value of the parameter. It allows simulation from many members of the exponential family. We present some bounds on computing time, as well as the main properties of the empirical measures of samples simulated by our methods (functional Glivenko-Cantelli and central limit theorems). This algorithm is applied in order to evaluate the distribution of M-estimators under composite alternatives; we also propose its use in Bayesian statistics in order to simulate from posterior distributions.

[1]  M. Iltis,et al.  Sharp asymptotics of large deviations in ℝd , 1995 .

[2]  R. Serfling Approximation Theorems of Mathematical Statistics , 1980 .

[3]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[4]  M. Broniatowski,et al.  Tauberian Theorems, Chernoff Inequality, and the Tail Behavior of Finite Convolutions of Distribution Functions , 1995 .

[5]  Ing Rj Ser Approximation Theorems of Mathematical Statistics , 1980 .

[6]  L. Goddard Approximation of Functions , 1965, Nature.

[7]  M. Birman,et al.  PIECEWISE-POLYNOMIAL APPROXIMATIONS OF FUNCTIONS OF THE CLASSES $ W_{p}^{\alpha}$ , 1967 .

[8]  J. Lamperti ON CONVERGENCE OF STOCHASTIC PROCESSES , 1962 .

[9]  Christian P. Robert,et al.  L'analyse statistique bayésienne , 1993 .

[10]  O. Barndorff-Nielsen Information And Exponential Families , 1970 .

[11]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[12]  M. Meerschaert Regular Variation in R k , 1988 .

[13]  A. Kolmogorov,et al.  Entropy and "-capacity of sets in func-tional spaces , 1961 .

[14]  D. Pollard Empirical Processes: Theory and Applications , 1990 .

[15]  W. Gilks,et al.  Adaptive Rejection Sampling for Gibbs Sampling , 1992 .

[16]  R. Loynes CONTIGUITY OF PROBABILITY MEASURES: SOME APPLICATIONS IN STATISTICS , 1974 .

[17]  Adrian F. M. Smith,et al.  Bayesian Inference for Generalized Linear and Proportional Hazards Models Via Gibbs Sampling , 1993 .

[18]  H. Teicher,et al.  Probability theory: Independence, interchangeability, martingales , 1978 .

[19]  A. Dembo,et al.  Large Deviation Techniques and Applications. , 1994 .

[20]  J. S. Sadowsky,et al.  Large deviations theory techniques in Monte Carlo simulation , 1989, WSC '89.

[21]  George G. Roussas,et al.  Contiguity of probability measures: some applications in statistics: Preface , 1972 .

[22]  David Haussler,et al.  Sphere Packing Numbers for Subsets of the Boolean n-Cube with Bounded Vapnik-Chervonenkis Dimension , 1995, J. Comb. Theory, Ser. A.

[23]  J. F. C. Kingman,et al.  Information and Exponential Families in Statistical Theory , 1980 .

[24]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[25]  G. Lorentz Approximation of Functions , 1966 .

[26]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[27]  M. Talagrand Concentration of measure and isoperimetric inequalities in product spaces , 1994, math/9406212.

[28]  J. Berger,et al.  The Intrinsic Bayes Factor for Model Selection and Prediction , 1996 .

[29]  L. Brown Fundamentals of statistical exponential families: with applications in statistical decision theory , 1986 .