First experimental evidence of alluaudite-like phosphates with high Li-content the (Na1-xLix)MnFe2(PO4)3 series (x = 0 to 1)

Members of the Na 1-x Li x MnFe 2 (PO 4 ) 3 series, with the alluaudite structure type, were synthesized by solid-state reaction in air. The crystal structure refinement of the NaMnFe 2 (PO 4 ) 3 end-member (space group C2/ c, Z = 4, a = 12.018(2), b = 12.565(3), c = 6.415(1) A, β = 114.33(3)°), a synthetic compound with a chemical composition corresponding to the idealized composition of the Buranga alluaudite, was carried out to R 1 = 0.026. The following cationic distribution was observed: Na + + □ in A(1) and A(2)′ (□ denotes lattice vacancies), Mn 2+ in M(1), Fe 3+ + Fe 2+ in M(2). The A(2)′ site exhibits a distorted gable disphenoid morphology and is found at the (0, y, ¼) (y ≈ 0) position in channel 2 of the alluaudite structure. The crystal structure of Na 0.5 Li 0.5 MnFe 2 (PO 4 ) 3 (space group C2/ c, Z = 4, a = 11.988(2), b = 12.500(3), c = 6.392(1) A, β = 114.67(3)°), refined to R 1 = 0.034, leads to the cationic distribution: Li + + Na + + □ in A(2)′, Na + + □in A(1), Mn 2+ in M(1), Fe 3+ + Fe 2+ in M(2). Thus, the substitution mechanism involved in the replacement of Na by Li in the Na 1-x Li x MnFe 2 (PO 4 ) 3 alluaudite-like compounds corresponds to □ + Na □ Li + □, with x ranging from 0.00 to 0.90.

[1]  G. Long,et al.  Hydrothermal Synthesis, Structure, and Characterization of a Mixed-Valent Iron(II/III) Phosphate, NaFe3.67(PO4)3: A New Variation of the Alluaudite Structure Type , 1998 .

[2]  A. Rulmont,et al.  Influence of cationic substitutions in Na3Fe2(AsO4)3 : Transition from the garnet to the alluaudite structure , 1998 .

[3]  A. Rulmont,et al.  Alluaudite-Like Structure of the Arsenate Na3In2(AsO4)3 , 1997 .

[4]  A. Rulmont,et al.  Alluaudite-like Structure of the Complex Arsenate NaCaCdMg2(AsO4)3 , 1997 .

[5]  André Rulmont,et al.  The Arsenates NaCa2M2+2(AsO4)3(M2+=Mg, Ni, Co): Influence of Cationic Substitutions on the Garnet–Alluaudite Polymorphism , 1997 .

[6]  Jinhua Ye,et al.  Hydrothermal Synthesis and Structures of Na3In2(PO4)3and Na3In2(AsO4)3: Synthetic Modifications of the Mineral Alluaudite , 1997 .

[7]  A. Rulmont,et al.  Structure of the Complex Arsenates NaCa2M2+2 (AsO4)3 (M2+ = Mg, Ni, Co): First Experimental Evidence of a Garnet-Alluaudite Reversible Polymorphism , 1995 .

[8]  D. Guyomard,et al.  Cation Substitution in the Alluaudite Structure Type: Synthesis and Structure of AgMn3(PO4)(HPO4)2 , 1995 .

[9]  D. Guyomard,et al.  Synthesis and Structure of NaMn3(PO4)(HPO4)2, an Unoxidized Variant of the Alluaudite Structure Type , 1995 .

[10]  P. Tarte,et al.  Synthese et cristallochimie de NaCaCdMg 2 (PO 4 ) 3 , phosphate nouveau a structure alluaudite sans cation trivalent , 1995 .

[11]  J. Maier,et al.  Synthesis and Structure of Cu1.35Fe3(PO4)3 and Cu2Mg3(PO4)3: New Mixed Valence Compounds of the Alluaudite Structure Type. , 1993 .

[12]  W. Schmahl,et al.  Combined X-ray Rietveld, infrared and Raman study of a new synthetic variety of alluaudite, NaCdIn2(PO4)3 , 1993 .

[13]  T. Armbruster,et al.  Crystal chemistry of lithium; oxygen coordination and bonding , 1991 .

[14]  J. Winand,et al.  Synthese et etude de nouveaux arseniates (MI)3(NIII)2(AsO4)3 et de solutions solides (MI)3(NIII)2(AsO4)x(PO4)3−x (M = Li, Na; N = Fe, Sc, In, Cr) , 1990 .

[15]  F. Hawthorne,et al.  The crystal structure of bobfergusonite , 1986 .

[16]  H. Riffel,et al.  Die Kristallstruktur von AgCu3Cu(AsO4)3 und ihre strukturellen Beziehungen zu AgCo3H2(AsO4)3 bzw. AgZn3H2(AsO4)3 , 1985 .

[17]  I. D. Brown,et al.  Bond‐valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database , 1985 .

[18]  H. Riffel,et al.  AgCo3H2(AsO4)3 und AgZn3H2(AsO4)3 Darstellung und Kristallstruktur Ein weiterer neuer Arsenat‐Strukturtyp , 1981 .

[19]  P. Moore Complex crystal structures related to glaserite, K3Na(SO4)2 : evidence for very dense packings among oxysalts , 1981 .

[20]  A. Fransolet The eosphorite-childrenite series associated with the Li-Mn-Fe phosphate minerals from the Buranga pegmatite, Rwanda , 1980, Mineralogical Magazine.

[21]  P. Moore,et al.  Alluaudites, wyllieites, arrojadites: crystal chemistry and nomenclature , 1979, Mineralogical Magazine.

[22]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[23]  J. Molin-Case,et al.  Contribution to Pegmatite Phosphate Giant Crystal Paragenesis: II. The Crystal Chemistry of Wyllieite, Na2Fe2+2AI[P04]3, A Primary Phase , 1974 .

[24]  Roger G. Burns,et al.  Mineralogical applications of crystal field theory , 1970 .

[25]  S. Geller,et al.  Refinement of the structure of LiMnPO4 , 1960 .