ICTGrasper at TAC2009: Temporal Preferred Update Summarization

Update summarization is an extension of query-focused multi- document summarization which was launched at DUC 2007. The essential problem of update summarization is to attain the information novelty and topic continuity simultaneously. In this paper, we proposed several Temporal Content Filtering Methods to extract the time-varying information for the update summarization task, while the topic continuity is achieved by identifying the temporal topic signatures. Another manifold ranking approach is also adopted to summarize the topic related information while revealing the intrinsic structure at the same time. The evaluation results show that our approaches are both competitive in practice.

[1]  Bernhard Schölkopf,et al.  Ranking on Data Manifolds , 2003, NIPS.

[2]  Eduard H. Hovy,et al.  The Automated Acquisition of Topic Signatures for Text Summarization , 2000, COLING.

[3]  Yi Zhang,et al.  Novelty and redundancy detection in adaptive filtering , 2002, SIGIR '02.

[4]  Inderjeet Mani Recent developments in text summarization , 2001, CIKM '01.

[5]  Dragomir R. Radev,et al.  LexRank: Graph-based Lexical Centrality as Salience in Text Summarization , 2004, J. Artif. Intell. Res..

[6]  Dianne P. O'Leary,et al.  Arabic/English Multi-document Summarization with CLASSY - The Past and the Future , 2008, CICLing.

[7]  Sanda M. Harabagiu,et al.  Topic themes for multi-document summarization , 2005, SIGIR '05.

[8]  James Allan,et al.  On-Line New Event Detection and Tracking , 1998, SIGIR.

[9]  Ani Nenkova,et al.  Evaluating Content Selection in Summarization: The Pyramid Method , 2004, NAACL.

[10]  James Allan,et al.  Temporal summaries of new topics , 2001, SIGIR '01.

[11]  Hans Peter Luhn,et al.  The Automatic Creation of Literature Abstracts , 1958, IBM J. Res. Dev..

[12]  Mitsuru Ishizuka,et al.  Temporal multi-page summarization , 2006, Web Intell. Agent Syst..

[13]  Bernhard Schölkopf,et al.  Learning with Local and Global Consistency , 2003, NIPS.

[14]  Hua Li,et al.  Document Summarization Using Conditional Random Fields , 2007, IJCAI.

[15]  Xiaotie Deng,et al.  Accessor Variety Criteria for Chinese Word Extraction , 2004, CL.

[16]  Chin-Yew Lin,et al.  ROUGE: A Package for Automatic Evaluation of Summaries , 2004, ACL 2004.

[17]  Mitsuru Ishizuka,et al.  Change summarization in web collections , 2004 .

[18]  John M. Conroy,et al.  CLASSY 2007 at DUC 2007 , 2007 .

[19]  James Allan,et al.  Automatic generation of overview timelines , 2000, SIGIR '00.

[20]  Jin Zhang,et al.  Dynamic Summarization: Another Stride Towards Summarization , 2007, 2007 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology - Workshops.

[21]  Andrew Hickl,et al.  LCC's GISTexter at DUC 2007: Machine Reading for Update Summarization , 2007 .

[22]  Ani Nenkova,et al.  The Pyramid Method: Incorporating human content selection variation in summarization evaluation , 2007, TSLP.

[23]  Xiaojun Wan,et al.  Manifold-Ranking Based Topic-Focused Multi-Document Summarization , 2007, IJCAI.

[24]  Qiang Yang,et al.  Detect and Track Latent Factors with Online Nonnegative Matrix Factorization , 2007, IJCAI.