New Push‐Pull Chromophores Featuring TCAQ (11,11,12,12‐Tetracyano‐ 9,10‐anthraquinodimethane) and Other Dicyanovinyl Acceptors

Stable, highly colored push-pull chromophores with NMe2 donor and C=C(CN)2 acceptor moieties, featuring intense intramolecular charge-transfer (CT) bands in the UV/Vis spectra, are reported. In an attempt to prepare the quinoid push-pull systems 2, chromophores 10 and 11, with a central cyclohexene spacer, were obtained and characterized by X-ray analysis. A series of donor-substituted TCAQ (11,11,12,12-tetracyano-9,10-anthraquinodimethane) derivatives were synthesized, using the Knoevenagel condensation between appropriately functionalized anthraquinones and malononitrile, mediated by the Lehnert reagent (TiCl4/pyridine), as the key step. HCl addition to triple bonds was observed when this transformation was applied to alkynylated anthraquinones. Electrochemical studies by cyclic voltammetry (CV) and rotating-disk voltammetry (RDV) showed that introduction of donor substituents into the TCAQ core of 25, 26, and 31 shifts the first reduction potential to more negative values, while chromophores bearing guanidine moieties (27, 28) displayed a specific and complex redox behavior. Both electrochemical and UV/Vis data provide good evidence that D–A conjugation is more efficient through olefinic (in 10) than through acetylenic (in 37) spacers. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008)

[1]  R. Gómez,et al.  The first two decades of a versatile electron acceptor building block: 11,11,12,12-tetracyano-9,10-anthraquinodimethane (TCAQ). , 2007, Chemical Society reviews.

[2]  F. Diederich,et al.  Property tuning in charge-transfer chromophores by systematic modulation of the spacer between donor and acceptor. , 2007, Chemistry.

[3]  Ivan Biaggio,et al.  Extended conjugation and donor-acceptor substitution to improve the third-order optical nonlinearity of small molecules , 2007 .

[4]  P. Bäuerle,et al.  Synthesis and Electronic Properties of Anthraquinone-, Tetracyanoanthraquinodimethane-, and Perylenetetracarboxylic Diimide-Functionalized Poly(3,4-ethylenedioxythiophenes) , 2006 .

[5]  Dennis H. Evans,et al.  Studies of potential inversion in the electrochemical reduction of 11,11,12,12-tetracyano-9,10-anthraquinodimethane and 2,3,5,6-tetramethyl-7,7,8,8-tetracyano-1,4-benzoquinodimethane. , 2006, The journal of physical chemistry. B.

[6]  F. Diederich,et al.  Donor-substituted 1,1,4,4-tetracyanobutadienes (TCBDS): new chromophores with efficient intramolecular charge-transfer interactions by atom-economic synthesis. , 2006, Chemistry.

[7]  Ivan Biaggio,et al.  Highly efficient third-order optical nonlinearities in donor-substituted cyanoethynylethene molecules. , 2005, Optics letters.

[8]  M. Blesa,et al.  Tuning first molecular hyperpolarizabilities through the use of proaromatic spacers. , 2005, Journal of the American Chemical Society.

[9]  F. Diederich,et al.  Donor-substituted cyanoethynylethenes: pi-conjugation and band-gap tuning in strong charge-transfer chromophores. , 2005, Chemistry.

[10]  Pierangelo Metrangolo,et al.  Halogen bonding based recognition processes: a world parallel to hydrogen bonding. , 2005, Accounts of chemical research.

[11]  F. Diederich,et al.  Orthogonale multipolare Wechselwirkungen in chemischen und biologischen Strukturen , 2005 .

[12]  T. Netzel,et al.  Synthesis of Two 8-[(Anthraquinone-2-yl)-Linked]-2′-Deoxyadenosine 3′-Benzyl Hydrogen Phosphates for Studies of Photoinduced Hole Transport in DNA , 2005, Nucleosides, nucleotides & nucleic acids.

[13]  B. Cho,et al.  2,6-Bis[4-(p-dihexylaminostyryl)styryl]anthracene derivatives with large two-photon cross sections. , 2005, Organic letters.

[14]  K. Houk,et al.  How large is the conjugative stabilization of diynes? , 2004, Journal of the American Chemical Society.

[15]  T. Itoh,et al.  Molecular Oxygen Insertion Polymerization into Crystals of Tetrakis(alkoxycarbonyl)quinodimethanes , 2004 .

[16]  T. Itoh,et al.  Solid-State Polymerizations of 7-Alkoxycarbonyl-7-cyano-1,4-benzoquinone Methides , 2004 .

[17]  F. Diederich,et al.  Redox Properties of Linear and Cyclic Scaffolds Based on Di‐ and Tetraethynylethene , 2004 .

[18]  T. Kawase,et al.  2,6-Di-tert-butyl-4-(3,3-diarylpropadienylidene)-2,5-cyclohexadien-1-ones, the First Stable p-Quinopropadienes , 2004 .

[19]  T. Itoh,et al.  Crystal structures and topochemical polymerizations of 7,7,8,8-tetrakis(alkoxycarbonyl)quinodimethanes. , 2004, Journal of the American Chemical Society.

[20]  L. T. Scott,et al.  Elaboration of diaryl ketones into naphthalenes fused on two or four sides: a naphthoannulation procedure. , 2004, Journal of the American Chemical Society.

[21]  K. Sakai,et al.  A new synthesis, including asymmetric synthesis, of spiro[4.n]alkenones from three components: Cyclic ketones, chloromethyl p-tolyl sulfoxide, and acetonitrile; and a formal total synthesis of racemic acorone , 2003 .

[22]  N. Matsunaga,et al.  The conjugation stabilization of 1,3-butadiyne is zero. , 2003, Organic letters.

[23]  M. Catellani,et al.  Synthesis of soluble donor-acceptor double-cable polymers based on polythiophene and tetracyanoanthraquinodimethane (TCAQ). , 2003, Organic letters.

[24]  G. Haufe,et al.  Chemical consequences of fluorine substitution. Part 4. Diels–Alder reactions of fluorinated p-benzoquinones with Dane's diene. Synthesis of fluorinated D-homosteroids , 2002 .

[25]  V. Rotello,et al.  Trialkyltetrathiafulvalene−σ−Tetracyanoanthraquinodimethane (R3TTF−σ−TCNAQ) Diads: Synthesis, Intramolecular Charge-Transfer Properties, and X-ray Crystal Structure , 2001 .

[26]  T. Itoh,et al.  Synthesis and Polymerization of 7,7-Bromo-8,8-dicyano-quinodimethane , 2001 .

[27]  Michael W. Miller,et al.  Suzuki Arylation of 1,1-Dibromo-1-alkenes: Synthesis of Tetra-substituted Alkenes , 2001 .

[28]  Yuichi Kobayashi,et al.  Arylation of 8‐Acetoxyoctalenone in a Nickel‐Catalyzed Coupling Reaction with Lithium Arylborates , 2000 .

[29]  Carlos Díaz,et al.  TCNE and TCNQ ligands as efficient bridges in mixed-valence complexes containing iron–cyclopentadienyl and other organometallic systems , 2000 .

[30]  R. Wortmann,et al.  Organic Materials for Second-Order Non-Linear Optics , 1999 .

[31]  I. Lednev,et al.  Donor–π‐Acceptor Species Derived from Functionalised 1,3‐Dithiol‐2‐ylidene Anthracene Donor Units Exhibiting Photoinduced Electron Transfer Properties: Spectroscopic, Electrochemical, X‐Ray Crystallographic and Theoretical Studies , 1998 .

[32]  R. Neidlein,et al.  Synthesis of Geminal Enediynes with Saturated and Unsaturated Carbocyclic Backbones by Palladium-Catalyzed Alkynylation of Dibromoolefins , 1998 .

[33]  Rik R. Tykwinski,et al.  Structure−Property Relationships in Third-Order Nonlinear Optical Chromophores , 1998 .

[34]  T. Itoh,et al.  Synthesis and polymerization of 7-alkoxycarbonyl-7,8,8-tricyanoquinodimethanes and 7,7-bis(alkoxycarbonyl)-8,8-dicyanoquinodimethanes , 1997 .

[35]  Paul A. Fleitz,et al.  Nonlinear Optics of Organic Molecules and Polymers , 1997 .

[36]  P. Hodge,et al.  Synthesis of poly(anthracene-2,6-diyl) and a copolymer containing alternately anthracene-2,6-diyl and p-phenylene units , 1997 .

[37]  Y. Aso,et al.  PUSH-PULL TYPE OF DIPHENOQUINOID CHROMOPHORES AS NOVEL NEAR-INFRARED DYES , 1997 .

[38]  J. B. Lambert,et al.  The Interaction of π Orbitals with a Carbocation over Three σ Bonds , 1996 .

[39]  F. Diederich,et al.  Donor–acceptor substituted tetraethynylethenes , 1996 .

[40]  Seth R. Marder,et al.  Large First Hyperpolarizabilities in Push-Pull Polyenes by Tuning of the Bond Length Alternation and Aromaticity , 1994, Science.

[41]  André Persoons,et al.  THIRD-ORDER NONLINEAR OPTICAL RESPONSE IN ORGANIC MATERIALS : THEORETICAL AND EXPERIMENTAL ASPECTS , 1994 .

[42]  R. Gompper,et al.  Donor‐acceptor‐substituierte cyclische π‐Elektronensysteme ‐ Prüfsteine für Theorien und Bausteine für neue Materialien , 1988 .

[43]  R. Metzger,et al.  Preparation of 2-(hydroxymethyl)-11,11,12,12-tetracyanoanthraquinodimethane and its carbamates with electron-donor moieties , 1987 .

[44]  義則 西沢,et al.  11,11,12,12-テ卜ラシアノアントラキノジメタン誘導体の合成と性質 , 1985 .

[45]  S. Arai,et al.  Amide Ion Formation and N-Alkylation of Aminoanthraquinones in the Presence of Potassium Hydroxide in Dimethyl Sulfoxide , 1985 .

[46]  D. Cowan,et al.  New synthesis and properties of 11,11,12,12-tetracyano-9,10-anthraquinodimethane: an electron acceptor displaying a single-wave, two-electron reduction and a coproportionation pathway to the radical anion , 1985 .

[47]  S. Hünig,et al.  Mehrstufige, reversible Redoxsysteme, XXXVI. 11,11,12,12-Tetracyan-9,10-anthrachinodimethan (TCNAQ) und seine Derivate: Synthese und Redoxeigenschaften , 1984 .

[48]  F. Texier-Boullet,et al.  Knoevenagel condensation catalysed by aluminium oxide. , 1982 .

[49]  J. Crivello Nitrations and oxidations with inorganic nitrate salts in trifluoroacetic anhydride , 1981 .

[50]  S. Lang,et al.  Bisamidines of 2,6-diaminoanthraquinone as antiamebic agents. , 1978, Journal of medicinal chemistry.

[51]  W. Lehnert Knoevenagel-Kondensationen mit TiCl4/Base - V1. 3-Alkyliden- und 3-Aryliden-2,4-pentandione aus Aldehyden und Acetylaceton , 1974 .

[52]  W. Lehnert Verbesserte variante der knoevenagel-kondensation mit TiCl4/THF/pyridin(I). Alkyliden- und Arylidenmalonester bei 0–25°C. , 1970 .

[53]  R. Gompper,et al.  Ketenderivate, XIV. Stabile p-Chinodimethane, II: Reaktionen , 1968 .

[54]  R. Gompper,et al.  Ketenderivate, XIII. Stabile p‐Chinodimethane, I: Synthesen und Eigenschaften , 1968 .