Towards quantum-dot arrays of entangled photon emitters

An array of pyramidal site-controlled InGaAs1−δNδ quantum dots is grown on a GaAs substrate to reduce the fine-structure splitting of the intermediate single-exciton energy levels to less than 4 μeV. The quantum dots emit polarization-entangled photons at a maximum fidelity of 0.721 ± 0.043 without external manipulation of the electronic states.

[1]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[2]  Polarization-entangled photons produced with high-symmetry site-controlled quantum dots , 2010 .

[3]  R. M. Stevenson,et al.  Inversion of exciton level splitting in quantum dots , 2005 .

[4]  Decomposition, diffusion, and growth rate anisotropies in self-limited profiles during metalorganic vapor-phase epitaxy of seeded nanostructures , 2011, 1108.3307.

[5]  B. Gerardot,et al.  Entangled photon pairs from semiconductor quantum dots. , 2005, Physical Review Letters.

[6]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[7]  Andrew G. White,et al.  Measurement of qubits , 2001, quant-ph/0103121.

[8]  L. Mereni,et al.  A study of nitrogen incorporation in pyramidal site-controlled quantum dots , 2011, Nanoscale research letters.

[9]  Hideo Ohno,et al.  Generation and control of polarization-entangled photons from GaAs island quantum dots by an electric field , 2012, Nature Communications.

[10]  M. Byszewski,et al.  Coulomb correlations of charged excitons in semiconductor quantum dots , 2009 .

[11]  M. Winkelnkemper,et al.  In(Ga)As/GaAs quantum dots grown on a (111) surface as ideal sources of entangled photon pairs , 2009 .

[12]  Benson,et al.  Regulated and entangled photons from a single quantum Dot , 2000, Physical review letters.

[13]  Self-limiting evolution of seeded quantum wires and dots on patterned substrates. , 2012, Physical review letters.

[14]  Shih,et al.  New high-intensity source of polarization-entangled photon pairs. , 1995, Physical review letters.

[15]  W. Wootters,et al.  Entanglement of a Pair of Quantum Bits , 1997, quant-ph/9703041.

[16]  D. Ritchie,et al.  Coherence of an entangled exciton-photon state. , 2007, Physical review letters.

[17]  A. Politi,et al.  Integrated Quantum Photonics , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[18]  A. Politi,et al.  Integrated quantum photonics , 2010 .

[19]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[20]  D. Ritchie,et al.  Evolution of entanglement between distinguishable light states. , 2008, Physical review letters.

[21]  A. Politi,et al.  Silica-on-Silicon Waveguide Quantum Circuits , 2008, Science.

[22]  A J Shields,et al.  Indistinguishable entangled photons generated by a light-emitting diode. , 2012, Physical review letters.

[23]  T. Ralph,et al.  Demonstration of an all-optical quantum controlled-NOT gate , 2003, Nature.

[24]  Gregor Weihs,et al.  Monolithic source of photon pairs. , 2012, Physical review letters.

[25]  O. Schmidt,et al.  Universal recovery of the energy-level degeneracy of bright excitons in InGaAs quantum dots without a structure symmetry. , 2012, Physical review letters.

[26]  G. Bester,et al.  Nanowire quantum dots as an ideal source of entangled photon pairs. , 2009, Physical review letters.

[27]  O. Schmidt,et al.  Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K , 2007 .

[28]  D. Ritchie,et al.  A semiconductor source of triggered entangled photon pairs , 2006, Nature.