Signals, Regulatory Networks, and Materials That Build and Break Bacterial Biofilms

SUMMARY Biofilms are communities of microorganisms that live attached to surfaces. Biofilm formation has received much attention in the last decade, as it has become clear that virtually all types of bacteria can form biofilms and that this may be the preferred mode of bacterial existence in nature. Our current understanding of biofilm formation is based on numerous studies of myriad bacterial species. Here, we review a portion of this large body of work including the environmental signals and signaling pathways that regulate biofilm formation, the components of the biofilm matrix, and the mechanisms and regulation of biofilm dispersal.

[1]  Y. Chang,et al.  Vibrio cholerae hemagglutinin/protease, colonial variation, virulence, and detachment , 1992, Infection and immunity.

[2]  D. Larson,et al.  Identification of Genes Required for Synthesis of the Adhesive Holdfast in Caulobacter crescentus , 2003, Journal of bacteriology.

[3]  S. Wai,et al.  Vibrio cholerae O1 Strain TSI-4 Produces the Exopolysaccharide Materials That Determine Colony Morphology, Stress Resistance, and Biofilm Formation , 1998, Applied and Environmental Microbiology.

[4]  D. Sturdevant,et al.  Genomewide analysis of gene expression in Staphylococcus epidermidis biofilms: insights into the pathophysiology of S. epidermidis biofilms and the role of phenol-soluble modulins in formation of biofilms. , 2005, The Journal of infectious diseases.

[5]  D. Tifrea,et al.  A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[6]  S. Lory,et al.  A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. , 2004, Developmental cell.

[7]  G. Frankel,et al.  Attaching effacing Escherichia coli and paradigms of Tir‐triggered actin polymerization: getting off the pedestal , 2008, Cellular microbiology.

[8]  D. Giedroc,et al.  The RNA Molecule CsrB Binds to the Global Regulatory Protein CsrA and Antagonizes Its Activity in Escherichia coli * , 1997, The Journal of Biological Chemistry.

[9]  Søren Molin,et al.  Global impact of mature biofilm lifestyle on Escherichia coli K‐12 gene expression , 2003, Molecular microbiology.

[10]  P. Babitzke,et al.  CsrA post‐transcriptionally represses pgaABCD, responsible for synthesis of a biofilm polysaccharide adhesin of Escherichia coli , 2005, Molecular microbiology.

[11]  I. Lasa,et al.  BapA, a large secreted protein required for biofilm formation and host colonization of Salmonella enterica serovar Enteritidis , 2005, Molecular microbiology.

[12]  C. Solano,et al.  Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose , 2002, Molecular microbiology.

[13]  H. Rohde,et al.  Glucose-Related Dissociation between icaADBC Transcription and Biofilm Expression by Staphylococcus epidermidis: Evidence for an Additional Factor Required for Polysaccharide Intercellular Adhesin Synthesis , 2003, Journal of bacteriology.

[14]  U. Römling,et al.  The csgD promoter, a control unit for biofilm formation in Salmonella typhimurium. , 2003, Research in microbiology.

[15]  P. Watnick,et al.  Role for Glycine Betaine Transport in Vibrio cholerae Osmoadaptation and Biofilm Formation within Microbial Communities , 2005, Applied and Environmental Microbiology.

[16]  I. Lasa,et al.  Bap-dependent biofilm formation by pathogenic species of Staphylococcus: evidence of horizontal gene transfer? , 2005, Microbiology.

[17]  Z Lewandowski,et al.  Structural deformation of bacterial biofilms caused by short-term fluctuations in fluid shear: an in situ investigation of biofilm rheology. , 1999, Biotechnology and bioengineering.

[18]  P. Watnick,et al.  The absence of a flagellum leads to altered colony morphology, biofilm development and virulence in Vibrio cholerae O139 , 2001, Molecular microbiology.

[19]  K. Hirota,et al.  Effect of Varidase (Streptodornase) on Biofilm Formed by Pseudomonas aeruginosa , 2003, Chemotherapy.

[20]  S. Molin,et al.  Antigen 43 facilitates formation of multispecies biofilms. , 2000, Environmental microbiology.

[21]  A. Spormann,et al.  Induction of Rapid Detachment in Shewanella oneidensis MR-1 Biofilms , 2005, Journal of bacteriology.

[22]  R. Hancock,et al.  An Immunohistological Evaluation of Pseudomonas aeruginosa Pulmonary Infection in Two Patients with Cystic Fibrosis , 1987, Pediatric Research.

[23]  J Schultz,et al.  SMART, a simple modular architecture research tool: identification of signaling domains. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[24]  U. Römling,et al.  GGDEF and EAL domains inversely regulate cyclic di‐GMP levels and transition from sessility to motility , 2004, Molecular microbiology.

[25]  U. Römling,et al.  The PilZ Domain Is a Receptor for the Second Messenger c-di-GMP , 2006, Journal of Biological Chemistry.

[26]  R. Kolter,et al.  Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development , 1998, Molecular microbiology.

[27]  A. Spormann,et al.  Dynamics and Control of Biofilms of the Oligotrophic Bacterium Caulobacter crescentus , 2004, Journal of bacteriology.

[28]  Howard C. Berg,et al.  Direct observation of extension and retraction of type IV pili , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[29]  J. Costerton,et al.  Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis , 1980, Infection and immunity.

[30]  R. H. Gross,et al.  Phosphate‐dependent modulation of c‐di‐GMP levels regulates Pseudomonas fluorescens Pf0‐1 biofilm formation by controlling secretion of the adhesin LapA , 2007, Molecular microbiology.

[31]  Lucy Shapiro,et al.  Spatial complexity and control of a bacterial cell cycle. , 2007, Current opinion in biotechnology.

[32]  R. Losick,et al.  Targets of the master regulator of biofilm formation in Bacillus subtilis , 2006, Molecular microbiology.

[33]  S. Falkow,et al.  Characterization of interactions of enteropathogenic Escherichia coli O127:H6 with mammalian cells in vitro. , 1991, The Journal of infectious diseases.

[34]  S. Molin,et al.  Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants , 2003, Molecular microbiology.

[35]  B. Bassler,et al.  Bacterial social engagements. , 2004, Trends in cell biology.

[36]  James D Bryers,et al.  Medical biofilms. , 2008, Biotechnology and bioengineering.

[37]  Michael J. MacCoss,et al.  Aminoglycoside antibiotics induce bacterial biofilm formation , 2005, Nature.

[38]  Leo Eberl,et al.  Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. , 2002, Microbiology.

[39]  Roseanne M Ford,et al.  Characterizing the adhesion of motile and nonmotile Escherichia coli to a glass surface using a parallel-plate flow chamber. , 2002, Biotechnology and bioengineering.

[40]  H. Baker,et al.  Different Roles of EIIABMan and EIIGlc in Regulation of Energy Metabolism, Biofilm Development, and Competence in Streptococcus mutans , 2006, Journal of bacteriology.

[41]  P. Babitzke,et al.  Positive regulation of motility and flhDC expression by the RNA‐binding protein CsrA of Escherichia coli , 2001, Molecular microbiology.

[42]  M. Schembri,et al.  Novel Roles for the AIDA Adhesin from Diarrheagenic Escherichia coli: Cell Aggregation and Biofilm Formation , 2004, Journal of bacteriology.

[43]  B. Bassler,et al.  Lsr‐mediated transport and processing of AI‐2 in Salmonella typhimurium , 2003, Molecular microbiology.

[44]  Peter L Lee,et al.  The SOS response regulates adaptive mutation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[45]  H. Hasman,et al.  Antigen-43-Mediated Autoaggregation ofEscherichia coli Is Blocked by Fimbriation , 1999, Journal of bacteriology.

[46]  P. Watnick,et al.  Identification of novel stage‐specific genetic requirements through whole genome transcription profiling of Vibrio cholerae biofilm development , 2005, Molecular microbiology.

[47]  Michael Y. Galperin,et al.  Novel domains of the prokaryotic two-component signal transduction systems. , 2001, FEMS microbiology letters.

[48]  H. Berg,et al.  A Molecular Clutch Disables Flagella in the Bacillus subtilis Biofilm , 2008, Science.

[49]  P. Watnick,et al.  Identification and Characterization of a Vibrio cholerae Gene, mbaA , Involved in Maintenance of Biofilm Architecture , 2022 .

[50]  B. Finlay,et al.  Putting E. coli on a pedestal: a unique system to study signal transduction and the actin cytoskeleton. , 1999, Trends in cell biology.

[51]  J. M. Dow,et al.  Biofilm formation and dispersal in Xanthomonas campestris. , 2004, Microbes and infection.

[52]  C. Wolz,et al.  Biofilm Formation, icaADBC Transcription, and Polysaccharide Intercellular Adhesin Synthesis by Staphylococci in a Device-Related Infection Model , 2005, Infection and Immunity.

[53]  S. Kjelleberg,et al.  Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors , 2003, The EMBO journal.

[54]  P. Cossart,et al.  Internalin of Listeria monocytogenes with an intact leucine-rich repeat region is sufficient to promote internalization , 1997, Infection and immunity.

[55]  Philip S. Stewart,et al.  Contributions of Antibiotic Penetration, Oxygen Limitation, and Low Metabolic Activity to Tolerance of Pseudomonas aeruginosa Biofilms to Ciprofloxacin and Tobramycin , 2003, Antimicrobial Agents and Chemotherapy.

[56]  L. McCarter,et al.  ScrG, a GGDEF-EAL Protein, Participates in Regulating Swarming and Sticking in Vibrio parahaemolyticus , 2007, Journal of bacteriology.

[57]  C. Jacobs-Wagner,et al.  Spatial and temporal control of differentiation and cell cycle progression in Caulobacter crescentus. , 2003, Annual review of microbiology.

[58]  J. Costerton,et al.  Phenotypic differentiation and seeding dispersal in non-mucoid and mucoid Pseudomonas aeruginosa biofilms. , 2005, Microbiology.

[59]  J. Ghigo,et al.  Finding gene-expression patterns in bacterial biofilms. , 2005, Trends in microbiology.

[60]  P. Stewart,et al.  Quantitative observations of heterogeneities in Pseudomonas aeruginosa biofilms , 1993, Applied and environmental microbiology.

[61]  C. Hill,et al.  The interaction between bacteria and bile. , 2005, FEMS microbiology reviews.

[62]  F. Yildiz,et al.  Interplay between Cyclic AMP-Cyclic AMP Receptor Protein and Cyclic di-GMP Signaling in Vibrio cholerae Biofilm Formation , 2008, Journal of bacteriology.

[63]  H. Ceri,et al.  Pseudomonas aeruginosa GacA, a factor in multihost virulence, is also essential for biofilm formation , 2001, Molecular microbiology.

[64]  H. Rohde,et al.  Genes Involved in the Synthesis and Degradation of Matrix Polysaccharide in Actinobacillus actinomycetemcomitans and Actinobacillus pleuropneumoniae Biofilms , 2004, Journal of bacteriology.

[65]  Jun Zhu,et al.  Genetic and Phenotypic Diversity of Quorum-Sensing Systems in Clinical and Environmental Isolates of Vibrio cholerae , 2006, Infection and Immunity.

[66]  G. O’Toole,et al.  SadC Reciprocally Influences Biofilm Formation and Swarming Motility via Modulation of Exopolysaccharide Production and Flagellar Function , 2007, Journal of bacteriology.

[67]  R. Kolter,et al.  The Global Carbon Metabolism Regulator Crc Is a Component of a Signal Transduction Pathway Required for Biofilm Development by Pseudomonas aeruginosa , 2000, Journal of bacteriology.

[68]  Jun Li,et al.  Quorum Sensing in Escherichia coli Is Signaled by AI-2/LsrR: Effects on Small RNA and Biofilm Architecture , 2007, Journal of bacteriology.

[69]  D. Fine,et al.  Enzymatic Detachment of Staphylococcus epidermidis Biofilms , 2004, Antimicrobial Agents and Chemotherapy.

[70]  A. Camilli,et al.  Cyclic diguanylate (c‐di‐GMP) regulates Vibrio cholerae biofilm formation , 2004, Molecular microbiology.

[71]  M. Parsek,et al.  The promise and peril of transcriptional profiling in biofilm communities. , 2007, Current opinion in microbiology.

[72]  B. J. Hinnebusch,et al.  Depolymerization of β-1,6-N-Acetyl-d-Glucosamine Disrupts the Integrity of Diverse Bacterial Biofilms , 2005, Journal of bacteriology.

[73]  J. Connolly,et al.  A Three-Component Regulatory System Regulates Biofilm Maturation and Type III Secretion in Pseudomonas aeruginosa , 2005, Journal of bacteriology.

[74]  M. Marahiel,et al.  Siderophore-Based Iron Acquisition and Pathogen Control , 2007, Microbiology and Molecular Biology Reviews.

[75]  L. Zeef,et al.  Characterization of Nutrient-Induced Dispersion in Pseudomonas aeruginosa PAO1 Biofilm , 2004, Journal of bacteriology.

[76]  B. Lazazzera,et al.  The sporulation transcription factor Spo0A is required for biofilm development in Bacillus subtilis , 2001, Molecular microbiology.

[77]  J. O’Gara ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. , 2007, FEMS microbiology letters.

[78]  E. Greenberg,et al.  A component of innate immunity prevents bacterial biofilm development , 2002, Nature.

[79]  Blaise R. Boles,et al.  Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms , 2005, Molecular microbiology.

[80]  P. Watnick,et al.  Vibrio cholerae CytR is a repressor of biofilm development , 2002, Molecular microbiology.

[81]  J. Costerton,et al.  The involvement of cell-to-cell signals in the development of a bacterial biofilm. , 1998, Science.

[82]  M. Rohde,et al.  The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix , 2001, Molecular microbiology.

[83]  K. Bayles The biological role of death and lysis in biofilm development , 2007, Nature Reviews Microbiology.

[84]  R. Kolter,et al.  Flagellar Motility Is Critical for Listeria monocytogenes Biofilm Formation , 2007, Journal of bacteriology.

[85]  J. Calhoun,et al.  Osteomyelitis and the role of biofilms in chronic infection. , 2008, FEMS immunology and medical microbiology.

[86]  E. Greenberg,et al.  Influence of Quorum Sensing and Iron on Twitching Motility and Biofilm Formation in Pseudomonas aeruginosa , 2007, Journal of bacteriology.

[87]  S. Egan,et al.  Biofilm Development and Cell Death in the Marine Bacterium Pseudoalteromonas tunicata , 2004, Applied and Environmental Microbiology.

[88]  F. Vandenesch,et al.  The agr P2 operon: an autocatalytic sensory transduction system in Staphylococcus aureus. , 1995, Molecular & general genetics : MGG.

[89]  D. Kwiatkowski,et al.  Haplotypic diversity in human CEACAM genes: effects on susceptibility to meningococcal disease , 2007, Genes and Immunity.

[90]  A. Camilli,et al.  Cyclic Diguanylate Regulates Vibrio cholerae Virulence Gene Expression , 2005, Infection and Immunity.

[91]  David L. Chopp,et al.  Influence of the Hydrodynamic Environment on Quorum Sensing in Pseudomonas aeruginosa Biofilms , 2007, Journal of bacteriology.

[92]  J. Reiser,et al.  Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[93]  K. Klose,et al.  The Sodium-Driven Flagellar Motor Controls Exopolysaccharide Expression in Vibrio cholerae , 2004, Journal of bacteriology.

[94]  S. Rice,et al.  Biofilm Formation and Sloughing in Serratia marcescens Are Controlled by Quorum Sensing and Nutrient Cues , 2005, Journal of bacteriology.

[95]  M. Shemesh,et al.  Expression of biofilm-associated genes of Streptococcus mutans in response to glucose and sucrose. , 2007, Journal of medical microbiology.

[96]  J. Ghigo,et al.  A CsgD-Independent Pathway for Cellulose Production and Biofilm Formation in Escherichia coli , 2006, Journal of bacteriology.

[97]  S. Cramton,et al.  The Intercellular Adhesion (ica) Locus Is Present in Staphylococcus aureus and Is Required for Biofilm Formation , 1999, Infection and Immunity.

[98]  J. M. Dow,et al.  Biofilm dispersal in Xanthomonas campestris is controlled by cell–cell signaling and is required for full virulence to plants , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[99]  Bonnie L Bassler,et al.  Quorum sensing controls biofilm formation in Vibrio cholerae , 2003, Molecular microbiology.

[100]  P. Watnick,et al.  Genetic Analysis of Vibrio cholerae Monolayer Formation Reveals a Key Role for ΔΨ in the Transition to Permanent Attachment , 2008, Journal of bacteriology.

[101]  B. Finlay,et al.  Enterohemorrhagic Escherichia coliO157:H7 Produces Tir, Which Is Translocated to the Host Cell Membrane but Is Not Tyrosine Phosphorylated , 1999, Infection and Immunity.

[102]  Carlos C. Goller,et al.  The Cation-Responsive Protein NhaR of Escherichia coli Activates pgaABCD Transcription, Required for Production of the Biofilm Adhesin Poly-β-1,6-N-Acetyl-d-Glucosamine , 2006, Journal of bacteriology.

[103]  U. Römling,et al.  Oxygen tension and nutrient starvation are major signals that regulate agfD promoter activity and expression of the multicellular morphotype in Salmonella typhimurium. , 2001, Environmental microbiology.

[104]  U. Bai,et al.  SinI modulates the activity of SinR, a developmental switch protein of Bacillus subtilis, by protein-protein interaction. , 1993, Genes & development.

[105]  G. O’Toole,et al.  Roles for flagellar stators in biofilm formation by Pseudomonas aeruginosa. , 2007, Research in microbiology.

[106]  A. Kolb,et al.  Regulatory components at the csgD promoter--additional roles for OmpR and integration host factor and role of the 5' untranslated region. , 2006, FEMS microbiology letters.

[107]  C. Harwood,et al.  Subcellular location characteristics of the Pseudomonas aeruginosa GGDEF protein, WspR, indicate that it produces cyclic‐di‐GMP in response to growth on surfaces , 2007, Molecular microbiology.

[108]  M. McFall-Ngai Host-microbe symbiosis: the squid-Vibrio association--a naturally occurring, experimental model of animal/bacterial partnerships. , 2008, Advances in experimental medicine and biology.

[109]  B. Giese,et al.  Structural basis of activity and allosteric control of diguanylate cyclase. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[110]  C. Solano,et al.  The Enterococcal Surface Protein, Esp, Is Involved in Enterococcus faecalis Biofilm Formation , 2001, Applied and Environmental Microbiology.

[111]  T. L. Fountain,et al.  Glucan-binding proteins are essential for shaping Streptococcus mutans biofilm architecture. , 2007, FEMS microbiology letters.

[112]  T. Wood,et al.  Temporal gene-expression in Escherichia coli K-12 biofilms. , 2007, Environmental microbiology.

[113]  E. Greenberg,et al.  Quorum Sensing in Staphylococcus aureus Biofilms , 2004, Journal of bacteriology.

[114]  Y. Brun,et al.  Cell Cycle Control of a Holdfast Attachment Gene inCaulobacter crescentus , 1999, Journal of bacteriology.

[115]  I. Sutherland,et al.  The biofilm matrix--an immobilized but dynamic microbial environment. , 2001, Trends in microbiology.

[116]  D. Wozniak,et al.  Negative Control of Flagellum Synthesis in Pseudomonas aeruginosa Is Modulated by the Alternative Sigma Factor AlgT (AlgU) , 1999, Journal of bacteriology.

[117]  T. Tolker-Nielsen,et al.  Proteins with GGDEF and EAL domains regulate Pseudomonas putida biofilm formation and dispersal. , 2006, FEMS microbiology letters.

[118]  A. Camilli,et al.  Transcriptome and Phenotypic Responses of Vibrio cholerae to Increased Cyclic di-GMP Level , 2006, Journal of bacteriology.

[119]  C. Prigent-Combaret,et al.  Developmental pathway for biofilm formation in curli-producing Escherichia coli strains: role of flagella, curli and colanic acid. , 2000, Environmental microbiology.

[120]  J. Ghigo Natural conjugative plasmids induce bacterial biofilm development , 2001, Nature.

[121]  G. Schoolnik,et al.  Molecular analysis of rugosity in a Vibrio cholerae O1 El Tor phase variant , 2004, Molecular microbiology.

[122]  A. Camilli,et al.  The EAL Domain Protein VieA Is a Cyclic Diguanylate Phosphodiesterase* , 2005, Journal of Biological Chemistry.

[123]  M. Parsek,et al.  Identification of psl, a Locus Encoding a Potential Exopolysaccharide That Is Essential for Pseudomonas aeruginosa PAO1 Biofilm Formation , 2004, Journal of bacteriology.

[124]  E Morgenroth,et al.  Monitoring biofilm detachment under dynamic changes in shear stress using laser-based particle size analysis and mass fractionation. , 2003, Water science and technology : a journal of the International Association on Water Pollution Research.

[125]  George M. Hilliard,et al.  Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis. , 2002, Developmental cell.

[126]  R. Kolter,et al.  The outer membrane protein, Antigen 43, mediates cell‐to‐cell interactions within Escherichia coli biofilms , 2000, Molecular microbiology.

[127]  R. Isberg,et al.  Subversion of integrins by enteropathogenic Yersinia. , 2001, Journal of cell science.

[128]  Roberto Kolter,et al.  Biofilms: the matrix revisited. , 2005, Trends in microbiology.

[129]  C. Dorel,et al.  Gene Expression Regulation by the Curli Activator CsgD Protein: Modulation of Cellulose Biosynthesis and Control of Negative Determinants for Microbial Adhesion , 2006, Journal of bacteriology.

[130]  S. M. Kirov,et al.  Aeromonas Flagella (Polar and Lateral) Are Enterocyte Adhesins That Contribute to Biofilm Formation on Surfaces , 2004, Infection and Immunity.

[131]  P. Cossart,et al.  E-Cadherin Is the Receptor for Internalin, a Surface Protein Required for Entry of L. monocytogenes into Epithelial Cells , 1996, Cell.

[132]  E. Greenberg,et al.  Timing and Localization of Rhamnolipid Synthesis Gene Expression in Pseudomonas aeruginosa Biofilms , 2005, Journal of bacteriology.

[133]  A. Grossman,et al.  In Vivo Effects of Sporulation Kinases on Mutant Spo0A Proteins in Bacillus subtilis , 2001, Journal of bacteriology.

[134]  J. Mattick,et al.  Extracellular DNA required for bacterial biofilm formation. , 2002, Science.

[135]  S. Kjelleberg,et al.  A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms , 2006, Molecular microbiology.

[136]  A. Matthysse,et al.  Requirement for genes with homology to ABC transport systems for attachment and virulence of Agrobacterium tumefaciens , 1996, Journal of bacteriology.

[137]  D. Fine,et al.  Detachment of Actinobacillus actinomycetemcomitans Biofilm Cells by an Endogenous β-Hexosaminidase Activity , 2003, Journal of bacteriology.

[138]  I. Lapidus,et al.  Pausing of flagellar rotation is a component of bacterial motility and chemotaxis , 1988, Journal of bacteriology.

[139]  F. Götz,et al.  Activity of the major staphylococcal autolysin Atl. , 2006, FEMS microbiology letters.

[140]  G. O’Toole,et al.  Inverse Regulation of Biofilm Formation and Swarming Motility by Pseudomonas aeruginosa PA14 , 2007, Journal of bacteriology.

[141]  C. Hauck Cell adhesion receptors – signaling capacity and exploitation by bacterial pathogens , 2002, Medical Microbiology and Immunology.

[142]  L. Bret,et al.  Indole can act as an extracellular signal to regulate biofilm formation of Escherichia coli and other indole-producing bacteria. , 2003, Canadian journal of microbiology.

[143]  Bentley Lim,et al.  Cyclic‐diGMP signal transduction systems in Vibrio cholerae: modulation of rugosity and biofilm formation , 2006, Molecular microbiology.

[144]  S. Kjelleberg,et al.  Impact of Pseudomonas aeruginosa quorum sensing on biofilm persistence in an in vivo intraperitoneal foreign-body infection model. , 2007, Microbiology.

[145]  C. Prigent-Combaret,et al.  Abiotic Surface Sensing and Biofilm-Dependent Regulation of Gene Expression in Escherichia coli , 1999, Journal of bacteriology.

[146]  R. M. Vejborg,et al.  The TibA Adhesin/Invasin from Enterotoxigenic Escherichia coli Is Self Recognizing and Induces Bacterial Aggregation and Biofilm Formation , 2005, Infection and Immunity.

[147]  D. Georgellis,et al.  Regulatory Circuitry of the CsrA/CsrB and BarA/UvrY Systems of Escherichia coli , 2002, Journal of bacteriology.

[148]  R. Novick Autoinduction and signal transduction in the regulation of staphylococcal virulence , 2003, Molecular microbiology.

[149]  S. Molin,et al.  Characterization of starvation-induced dispersion in Pseudomonas putida biofilms. , 2005, Environmental microbiology.

[150]  C. Fuqua,et al.  Phosphorus Limitation Enhances Biofilm Formation of the Plant Pathogen Agrobacterium tumefaciens through the PhoR-PhoB Regulatory System , 2004, Journal of bacteriology.

[151]  P. Watnick,et al.  A Novel Role for Enzyme I of the Vibrio cholerae Phosphoenolpyruvate Phosphotransferase System in Regulation of Growth in a Biofilm , 2007, Journal of bacteriology.

[152]  A. Camper,et al.  Characterization of Phenotypic Changes inPseudomonas putida in Response to Surface-Associated Growth , 2001, Journal of bacteriology.

[153]  Y. Lim,et al.  Control of Glucose- and NaCl-Induced Biofilm Formation by rbf in Staphylococcus aureus , 2004, Journal of bacteriology.

[154]  R. Isberg,et al.  Cultured mammalian cells attach to the invasin protein of Yersinia pseudotuberculosis. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[155]  M. Achtman,et al.  Carcinoembryonic Antigen Family Receptor Specificity of Neisseria meningitidis Opa Variants Influences Adherence to and Invasion of Proinflammatory Cytokine-Activated Endothelial Cells , 2000, Infection and Immunity.

[156]  G. Schoolnik,et al.  VpsR, a Member of the Response Regulators of the Two-Component Regulatory Systems, Is Required for Expression ofvps Biosynthesis Genes and EPSETr-Associated Phenotypes in Vibrio cholerae O1 El Tor , 2001, Journal of bacteriology.

[157]  U. Jenal,et al.  Cell cycle‐dependent degradation of a flagellar motor component requires a novel‐type response regulator , 1999, Molecular microbiology.

[158]  Anthony W Smith,et al.  Biofilms and antibiotic therapy: is there a role for combating bacterial resistance by the use of novel drug delivery systems? , 2005, Advanced drug delivery reviews.

[159]  R. Kolter,et al.  Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili , 1998, Molecular microbiology.

[160]  F. Yildiz,et al.  The rbmBCDEF Gene Cluster Modulates Development of Rugose Colony Morphology and Biofilm Formation in Vibrio cholerae , 2007, Journal of bacteriology.

[161]  A. Filloux,et al.  The pel genes of the Pseudomonas aeruginosa PAK strain are involved at early and late stages of biofilm formation. , 2005, Microbiology.

[162]  S. Roseman,et al.  The Vibrio cholerae chitin utilization program. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[163]  J. Costerton,et al.  Pseudomonas aeruginosa Displays Multiple Phenotypes during Development as a Biofilm , 2002, Journal of bacteriology.

[164]  A. Spiers,et al.  Biofilm formation at the air–liquid interface by the Pseudomonas fluorescens SBW25 wrinkly spreader requires an acetylated form of cellulose , 2003, Molecular microbiology.

[165]  G. Schoolnik,et al.  Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[166]  E. Ruby,et al.  A squid that glows in the night: development of an animal-bacterial mutualism , 1992, Journal of bacteriology.

[167]  M. Fletcher Bacterial adhesion : molecular and ecological diversity , 1996 .

[168]  R. Süssmuth,et al.  Characterization of theN-Acetylglucosaminyltransferase Activity Involved in the Biosynthesis of the Staphylococcus epidermidisPolysaccharide Intercellular Adhesin* , 1998, The Journal of Biological Chemistry.

[169]  D. Wozniak,et al.  Role of polysaccharides in Pseudomonas aeruginosa biofilm development. , 2007, Current opinion in microbiology.

[170]  Joshua D. Rabinowitz,et al.  Quorum Sensing Controls Biofilm Formation in Vibrio cholerae through Modulation of Cyclic Di-GMP Levels and Repression of vpsT , 2004, Journal of bacteriology.

[171]  K. Rice,et al.  Molecular Control of Bacterial Death and Lysis , 2008, Microbiology and Molecular Biology Reviews.

[172]  Yufeng Yao,et al.  A Crucial Role for Exopolysaccharide Modification in Bacterial Biofilm Formation, Immune Evasion, and Virulence* , 2004, Journal of Biological Chemistry.

[173]  S. Shibata,et al.  Protease susceptibility of the Caulobacter crescentus flagellar hook-basal body: a possible mechanism of flagellar ejection during cell differentiation. , 2005, Microbiology.

[174]  Michael P. Sheetz,et al.  Pilus retraction powers bacterial twitching motility , 2000, Nature.

[175]  J. Ramos,et al.  Genetic Analysis of Functions Involved in Adhesion of Pseudomonas putida to Seeds , 2000, Journal of bacteriology.

[176]  P. Watnick,et al.  The Vibrio cholerae O139 O-antigen polysaccharide is essential for Ca2+-dependent biofilm development in sea water , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[177]  J. M. Dow,et al.  Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[178]  K. Lewis,et al.  Biofilms and Planktonic Cells of Pseudomonas aeruginosa Have Similar Resistance to Killing by Antimicrobials , 2001, Journal of bacteriology.

[179]  J. Leong,et al.  Tails of two Tirs: actin pedestal formation by enteropathogenic E. coli and enterohemorrhagic E. coli O157:H7. , 2003, Current opinion in microbiology.

[180]  Dorit Amikam,et al.  Cyclic di-GMP as a second messenger. , 2006, Current opinion in microbiology.

[181]  P. Williams,et al.  The attaching and effacing virulence property of enteropathogenic Escherichia coli. , 1993, Zentralblatt fur Bakteriologie : international journal of medical microbiology.

[182]  Zhiqiang Qin,et al.  Role of autolysin-mediated DNA release in biofilm formation of Staphylococcus epidermidis. , 2007, Microbiology.

[183]  D. Senadheera,et al.  Quorum sensing and biofilm formation by Streptococcus mutans. , 2008, Advances in experimental medicine and biology.

[184]  V. Deretic,et al.  Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. , 1996, Microbiological reviews.

[185]  B. Finlay,et al.  Enteropathogenic Escherichia coli: a pathogen that inserts its own receptor into host cells , 1999, Cellular and Molecular Life Sciences CMLS.

[186]  Matthew R. Parsek,et al.  Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[187]  J. Costerton,et al.  Influence of Hydrodynamics and Cell Signaling on the Structure and Behavior of Pseudomonas aeruginosa Biofilms , 2002, Applied and Environmental Microbiology.

[188]  Anisia J. Silva,et al.  The Cyclic AMP Receptor Protein Modulates Colonial Morphology in Vibrio cholerae , 2007, Applied and Environmental Microbiology.

[189]  Arul Jayaraman,et al.  Indole is an inter-species biofilm signal mediated by SdiA , 2007, BMC Microbiology.

[190]  E. Greenberg,et al.  Vibrio parahaemolyticus ScrC Modulates Cyclic Dimeric GMP Regulation of Gene Expression Relevant to Growth on Surfaces , 2007, Journal of bacteriology.

[191]  Roberto Kolter,et al.  Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis , 1998, Molecular microbiology.

[192]  Anisia J. Silva,et al.  Haemagglutinin/protease expression and mucin gel penetration in El Tor biotype Vibrio cholerae. , 2003, Microbiology.

[193]  D. Wozniak,et al.  Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis , 2005, Molecular microbiology.

[194]  T. Tolker-Nielsen,et al.  Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa. , 2007, Microbiology.

[195]  T. Romeo,et al.  Catabolite Repression of Escherichia coli Biofilm Formation , 2002, Journal of bacteriology.

[196]  Masaya Fujita,et al.  High- and Low-Threshold Genes in the Spo0A Regulon of Bacillus subtilis , 2005, Journal of bacteriology.

[197]  C. Solano,et al.  Role of the GGDEF protein family in Salmonella cellulose biosynthesis and biofilm formation , 2004, Molecular microbiology.

[198]  M. Parsek,et al.  Pseudomonas aeruginosa Psl Is a Galactose- and Mannose-Rich Exopolysaccharide , 2007, Journal of bacteriology.

[199]  A. Spormann,et al.  Control of Formation and Cellular Detachment from Shewanella oneidensis MR-1 Biofilms by Cyclic di-GMP , 2006, Journal of bacteriology.

[200]  John Karijolich,et al.  Metal-dependent repression of siderophore and biofilm formation in Actinomyces naeslundii. , 2007, FEMS microbiology letters.

[201]  Jun Zhu,et al.  Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. , 2003, Developmental cell.

[202]  A. Spiers,et al.  Biofilm formation and cellulose expression among diverse environmental Pseudomonas isolates. , 2006, Environmental microbiology.

[203]  S. Falkow,et al.  Caenorhabditis elegans: Plague bacteria biofilm blocks food intake , 2002, Nature.

[204]  Matthias Christen,et al.  Identification and Characterization of a Cyclic di-GMP-specific Phosphodiesterase and Its Allosteric Control by GTP* , 2005, Journal of Biological Chemistry.

[205]  P. Watnick,et al.  NspS, a Predicted Polyamine Sensor, Mediates Activation of Vibrio cholerae Biofilm Formation by Norspermidine , 2005, Journal of bacteriology.

[206]  Michael Y. Galperin,et al.  C‐di‐GMP: the dawning of a novel bacterial signalling system , 2005, Molecular microbiology.

[207]  Michael Y. Galperin,et al.  PilZ domain is part of the bacterial c-di-GMP binding protein , 2006, Bioinform..

[208]  C. Solano,et al.  Bap, a Staphylococcus aureus Surface Protein Involved in Biofilm Formation , 2001, Journal of bacteriology.

[209]  Blaise R. Boles,et al.  agr-Mediated Dispersal of Staphylococcus aureus Biofilms , 2008, PLoS pathogens.

[210]  S. Kjelleberg,et al.  Ecological Advantages of Autolysis during the Development and Dispersal of Pseudoalteromonas tunicata Biofilms , 2006, Applied and Environmental Microbiology.

[211]  Thomas K. Wood,et al.  YliH (BssR) and YceP (BssS) Regulate Escherichia coli K-12 Biofilm Formation by Influencing Cell Signaling , 2006, Applied and Environmental Microbiology.

[212]  G. Ehrlich,et al.  Phenotypic Characterization of Streptococcus pneumoniae Biofilm Development , 2006, Journal of bacteriology.

[213]  R. Kolter,et al.  Two Genetic Loci Produce Distinct Carbohydrate-Rich Structural Components of the Pseudomonas aeruginosa Biofilm Matrix , 2004, Journal of bacteriology.

[214]  L. Hancock,et al.  Regulation of Autolysis-Dependent Extracellular DNA Release by Enterococcus faecalis Extracellular Proteases Influences Biofilm Development , 2008, Journal of bacteriology.

[215]  U. Romling,et al.  Effect of triclosan on Salmonella typhimurium at different growth stages and in biofilms. , 2007, FEMS microbiology letters.

[216]  E. Greenberg,et al.  Putative Exopolysaccharide Synthesis Genes Influence Pseudomonas aeruginosa Biofilm Development , 2004, Journal of bacteriology.

[217]  F. Yildiz,et al.  VpsT Is a Transcriptional Regulator Required for Expression of vps Biosynthesis Genes and the Development of Rugose Colonial Morphology in Vibrio cholerae O1 El Tor , 2004, Journal of bacteriology.

[218]  A. Prince,et al.  Opportunistic infections in lung disease: Pseudomonas infections in cystic fibrosis. , 2007, Current opinion in pharmacology.

[219]  M. Vasil,et al.  The response of Pseudomonas aeruginosa to iron: genetics, biochemistry and virulence , 1999, Molecular microbiology.

[220]  V. Girard,et al.  Adhesion mediated by autotransporters of Gram-negative bacteria: structural and functional features. , 2006, Research in microbiology.

[221]  S. Kjelleberg,et al.  Cell Death in Pseudomonas aeruginosa Biofilm Development , 2003, Journal of bacteriology.

[222]  G. O’Toole,et al.  SadB Is Required for the Transition from Reversible to Irreversible Attachment during Biofilm Formation by Pseudomonas aeruginosa PA14 , 2004, Journal of bacteriology.

[223]  J. Lazzaroni,et al.  CpxR/OmpR Interplay Regulates Curli Gene Expression in Response to Osmolarity in Escherichia coli , 2005, Journal of bacteriology.

[224]  Roberto Kolter,et al.  Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms , 2003, Molecular microbiology.

[225]  A. Grossman,et al.  Identification of Catabolite Repression as a Physiological Regulator of Biofilm Formation by Bacillus subtilis by Use of DNA Microarrays , 2003, Journal of bacteriology.

[226]  P. Stewart,et al.  Role of Nutrient Limitation and Stationary-Phase Existence in Klebsiella pneumoniae Biofilm Resistance to Ampicillin and Ciprofloxacin , 2003, Antimicrobial Agents and Chemotherapy.

[227]  S. Lory,et al.  Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[228]  S. Salama,et al.  Regulation of Rugosity and Biofilm Formation in Vibrio cholerae: Comparison of VpsT and VpsR Regulons and Epistasis Analysis of vpsT, vpsR, and hapR , 2007, Journal of bacteriology.

[229]  H. Vlamakis,et al.  Biofilm development with an emphasis on Bacillus subtilis. , 2008, Current topics in microbiology and immunology.

[230]  D. Amikam,et al.  c‐di‐GMP‐binding protein, a new factor regulating cellulose synthesis in Acetobacter xylinum , 1997, FEBS letters.

[231]  Brian D Sykes,et al.  DNA Binding: a Novel Function of Pseudomonas aeruginosa Type IV Pili , 2005, Journal of bacteriology.

[232]  R. Losick,et al.  Fruiting body formation by Bacillus subtilis , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[233]  D. Davies,et al.  A Fatty Acid Messenger Is Responsible for Inducing Dispersion in Microbial Biofilms , 2008, Journal of bacteriology.

[234]  E. Greenberg,et al.  Iron and Pseudomonas aeruginosa biofilm formation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[235]  Jay X. Tang,et al.  Adhesion of single bacterial cells in the micronewton range. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[236]  Søren Molin,et al.  Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms , 2003, Molecular microbiology.

[237]  R. Losick,et al.  A novel regulatory protein governing biofilm formation in Bacillus subtilis , 2008, Molecular microbiology.

[238]  B. Bassler,et al.  Regulatory small RNAs circumvent the conventional quorum sensing pathway in pandemic Vibrio cholerae , 2007, Proceedings of the National Academy of Sciences.

[239]  S. J. Knott,et al.  Effect of antibiotics on non-growing planktonic cells and biofilms of Escherichia coli. , 1994, The Journal of antimicrobial chemotherapy.

[240]  Jun Zhu,et al.  Temporal Quorum-Sensing Induction Regulates Vibrio cholerae Biofilm Architecture , 2006, Infection and Immunity.

[241]  Vincent T. Lee,et al.  The second messenger bis‐(3′‐5′)‐cyclic‐GMP and its PilZ domain‐containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa , 2007, Molecular microbiology.

[242]  J. H. Boom,et al.  Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid , 1987, Nature.

[243]  Carlos C. Goller,et al.  Roles of pgaABCD Genes in Synthesis, Modification, and Export of the Escherichia coli Biofilm Adhesin Poly-β-1,6-N-Acetyl-d-Glucosamine , 2008, Journal of bacteriology.

[244]  D. Hassett,et al.  BdlA, a Chemotaxis Regulator Essential for Biofilm Dispersion in Pseudomonas aeruginosa , 2006, Journal of bacteriology.

[245]  J. Mekalanos,et al.  Bile acids stimulate biofilm formation in Vibrio cholerae , 2006, Molecular microbiology.

[246]  M. Perry,et al.  Poly-N-acetylglucosamine mediates biofilm formation and antibiotic resistance in Actinobacillus pleuropneumoniae. , 2007, Microbial pathogenesis.

[247]  S. Falkow,et al.  Identification of invasin: A protein that allows enteric bacteria to penetrate cultured mammalian cells , 1987, Cell.

[248]  G. O’Toole,et al.  Rhamnolipid Surfactant Production Affects Biofilm Architecture in Pseudomonas aeruginosa PAO1 , 2003, Journal of bacteriology.

[249]  J. Ramos,et al.  Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein , 2003, Molecular microbiology.

[250]  M. Sheetz,et al.  A force-dependent switch reverses type IV pilus retraction. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[251]  S. Molin,et al.  Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. , 1999, Microbiology.

[252]  R. Kolter,et al.  Exopolysaccharide Production Is Required for Development of Escherichia coli K-12 Biofilm Architecture , 2000, Journal of bacteriology.

[253]  J. Preston,et al.  The pgaABCD Locus of Escherichia coli Promotes the Synthesis of a Polysaccharide Adhesin Required for Biofilm Formation , 2004, Journal of bacteriology.

[254]  S. Diggle,et al.  The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa. , 2006, Environmental microbiology.

[255]  L. Brady,et al.  Differentiation of salivary agglutinin-mediated adherence and aggregation of mutans streptococci by use of monoclonal antibodies against the major surface adhesin P1 , 1992, Infection and immunity.

[256]  B. Ersbøll,et al.  Statistical Analysis of Pseudomonas aeruginosa Biofilm Development: Impact of Mutations in Genes Involved in Twitching Motility, Cell-to-Cell Signaling, and Stationary-Phase Sigma Factor Expression , 2002, Applied and Environmental Microbiology.

[257]  U. Römling,et al.  Production of Cellulose and Curli Fimbriae by Members of the Family Enterobacteriaceae Isolated from the Human Gastrointestinal Tract , 2003, Infection and Immunity.

[258]  S. Kjelleberg,et al.  Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling , 1996, Journal of bacteriology.

[259]  J. M. Dow,et al.  Cyclic Di-GMP Signaling in Bacteria: Recent Advances and New Puzzles , 2006, Journal of bacteriology.

[260]  M. Donnenberg,et al.  Interactions between enteropathogenic Escherichia coli and epithelial cells. , 1999, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[261]  A. Horswill,et al.  A role for type I signal peptidase in Staphylococcus aureus quorum sensing , 2007, Molecular microbiology.

[262]  I. Lasa,et al.  Bap: a family of surface proteins involved in biofilm formation. , 2006, Research in microbiology.

[263]  P. Watnick,et al.  Environmental Determinants of Vibrio cholerae Biofilm Development , 2003, Applied and Environmental Microbiology.

[264]  S. Vilain,et al.  Multivariate approach to comparing whole-cell proteomes of Bacillus cereus indicates a biofilm-specific proteome. , 2006, Journal of proteome research.

[265]  M. Otto,et al.  Impact of the agr quorum-sensing system on adherence to polystyrene in Staphylococcus aureus. , 2000, The Journal of infectious diseases.

[266]  Bonnie L. Bassler,et al.  Quorum-sensing regulators control virulence gene expression in Vibrio cholerae , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[267]  M. Jobling,et al.  Characterization of hapR, a positive regulator of the Vibrio cholerae HA/protease gene hap, and its identification as a functional homologue of the Vibrio harveyi luxR gene , 1997, Molecular microbiology.

[268]  Jun Zhu,et al.  CsrA and three redundant small RNAs regulate quorum sensing in Vibrio cholerae , 2005, Molecular microbiology.

[269]  P. Cristiani,et al.  Microbially-Influenced Corrosion: Damage to Prostheses, Delight for Bacteria , 2006 .

[270]  D. Chopp,et al.  The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional , 2006, Molecular microbiology.

[271]  K. Karplus,et al.  Identification and Characterization of RbmA, a Novel Protein Required for the Development of Rugose Colony Morphology and Biofilm Structure in Vibrio cholerae , 2006, Journal of bacteriology.

[272]  T. Romeo,et al.  Role of a Putative Polysaccharide Locus in Bordetella Biofilm Development , 2006, Journal of bacteriology.

[273]  R. Isberg,et al.  The mechanism of phagocytic uptake promoted by invasin-integrin interaction. , 1995, Trends in cell biology.

[274]  M. Parsek,et al.  Does Pseudomonas aeruginosa use intercellular signalling to build biofilm communities? , 2006, Cellular microbiology.

[275]  P. Watnick,et al.  Genetic evidence that the Vibrio cholerae monolayer is a distinct stage in biofilm development , 2004, Molecular microbiology.

[276]  S. Molin,et al.  Alginate Overproduction Affects Pseudomonas aeruginosa Biofilm Structure and Function , 2001, Journal of bacteriology.

[277]  W. Sierralta,et al.  Curli Fibers Are Highly Conserved between Salmonella typhimurium and Escherichia coli with Respect to Operon Structure and Regulation , 1998, Journal of bacteriology.

[278]  C. Fuqua,et al.  Quorum sensing and motility mediate interactions between Pseudomonas aeruginosa and Agrobacterium tumefaciens in biofilm cocultures. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[279]  S. Molin,et al.  Synergistic Effects in Mixed Escherichia coli Biofilms: Conjugative Plasmid Transfer Drives Biofilm Expansion , 2006, Journal of bacteriology.

[280]  A. Chakrabarty,et al.  Role of alginate lyase in cell detachment of Pseudomonas aeruginosa , 1994, Applied and environmental microbiology.

[281]  M. Parsek,et al.  Analysis of Pseudomonas aeruginosa Conditional Psl Variants Reveals Roles for the Psl Polysaccharide in Adhesion and Maintaining Biofilm Structure Postattachment , 2006, Journal of bacteriology.

[282]  B. Finlay,et al.  Enteropathogenic E. coli (EPEC) Transfers Its Receptor for Intimate Adherence into Mammalian Cells , 1997, Cell.

[283]  R. M. Vejborg,et al.  Self-associating autotransporters, SAATs: functional and structural similarities. , 2006, International journal of medical microbiology : IJMM.

[284]  M. Schubert,et al.  Gac/Rsm signal transduction pathway of γ‐proteobacteria: from RNA recognition to regulation of social behaviour , 2007, Molecular microbiology.

[285]  D. Georgellis,et al.  pH-Dependent Activation of the BarA-UvrY Two-Component System in Escherichia coli , 2006, Journal of bacteriology.

[286]  Y. Brun,et al.  Development of Surface Adhesion in Caulobacter crescentus , 2004, Journal of bacteriology.

[287]  I. Sutherland,et al.  The use of phages for the removal of infectious biofilms. , 2008, Current pharmaceutical biotechnology.

[288]  Involvement of N-Acetyl-D-galactosamine-specific Lectin in Biofilm Formation by the Periodontopathogenic Bacterium, Eikenella corrodens , 2006, Bioscience, biotechnology, and biochemistry.

[289]  R. Losick,et al.  A master regulator for biofilm formation by Bacillus subtilis , 2004, Molecular microbiology.

[290]  M. Deighton,et al.  Regulation of slime production in Staphylococcus epidermidis by iron limitation , 1993, Infection and immunity.

[291]  A. Paccanaro,et al.  Clustering of Pseudomonas aeruginosa transcriptomes from planktonic cultures, developing and mature biofilms reveals distinct expression profiles , 2006, BMC Genomics.

[292]  D. Wozniak,et al.  The AlgT-Dependent Transcriptional Regulator AmrZ (AlgZ) Inhibits Flagellum Biosynthesis in Mucoid, Nonmotile Pseudomonas aeruginosa Cystic Fibrosis Isolates , 2006, Journal of bacteriology.

[293]  C. Ubeda,et al.  Role of Biofilm-Associated Protein Bap in the Pathogenesis of Bovine Staphylococcus aureus , 2004, Infection and Immunity.

[294]  Mukesh Doble,et al.  Biofilm formation, bacterial adhesion and host response on polymeric implants—issues and prevention , 2008, Biomedical materials.

[295]  Megha Ghildiyal,et al.  Enterohaemorrhagic and enteropathogenic Escherichia coli Tir proteins trigger a common Nck‐independent actin assembly pathway , 2007, Cellular microbiology.

[296]  T. Romeo,et al.  Biofilm Formation and Dispersal under the Influence of the Global Regulator CsrA of Escherichia coli , 2002, Journal of bacteriology.

[297]  K. Lewis Multidrug tolerance of biofilms and persister cells. , 2008, Current topics in microbiology and immunology.

[298]  R. Phillips,et al.  Protein expression in Escherichia coli S17-1 biofilms: impact of indole , 2006, Antonie van Leeuwenhoek.

[299]  R. Breaker,et al.  Riboswitches in Eubacteria Sense the Second Messenger Cyclic Di-GMP , 2008, Science.

[300]  D. Mack,et al.  Molecular basis of intercellular adhesion in the biofilm‐forming Staphylococcus epidermidis , 1996, Molecular microbiology.

[301]  K. Lewis Persister cells and the riddle of biofilm survival , 2005, Biochemistry (Moscow).

[302]  Adeline R. Whitney,et al.  Transmission of Yersinia pestis from an infectious biofilm in the flea vector. , 2004, The Journal of infectious diseases.

[303]  B. Giese,et al.  Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. , 2004, Genes & development.

[304]  O. Billker,et al.  The structural basis of CEACAM-receptor targeting by neisserial Opa proteins. , 2000, Trends in microbiology.

[305]  M. Parsek,et al.  Bacterial biofilms: an emerging link to disease pathogenesis. , 2003, Annual review of microbiology.

[306]  R. Süssmuth,et al.  Characterization of the N-acetylglucosaminyltransferase activity involved in the biosynthesis of the Staphylococcus epidermidis polysaccharide intercellular adhesin. , 1998, The Journal of biological chemistry.

[307]  S. Normark,et al.  Expression of two csg operons is required for production of fibronectin‐ and Congo red‐binding curli polymers in Escherichia coli K‐12 , 1995, Molecular microbiology.

[308]  Markus Meuwly,et al.  Allosteric Control of Cyclic di-GMP Signaling* , 2006, Journal of Biological Chemistry.

[309]  K. Rice,et al.  The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus , 2007, Proceedings of the National Academy of Sciences.

[310]  C. Fuqua,et al.  Motility and Chemotaxis in Agrobacterium tumefaciens Surface Attachment and Biofilm Formation , 2007, Journal of bacteriology.

[311]  Richard O. Hynes,et al.  Integrins: A family of cell surface receptors , 1987, Cell.

[312]  Thomas K. Wood,et al.  Autoinducer 2 Controls Biofilm Formation in Escherichia coli through a Novel Motility Quorum-Sensing Regulator (MqsR, B3022) , 2006, Journal of bacteriology.

[313]  U. Römling,et al.  Microcolony formation: a novel biofilm model of Pseudomonas aeruginosa for the cystic fibrosis lung. , 2005, Journal of medical microbiology.

[314]  W. Sierralta,et al.  Multicellular and aggregative behaviour of Salmonella typhimurium strains is controlled by mutations in the agfD promoter , 1998, Molecular microbiology.

[315]  R. Loris,et al.  Pseudomonas aeruginosa lectin LecB is located in the outer membrane and is involved in biofilm formation. , 2005, Microbiology.

[316]  Bentley Lim,et al.  Regulation of Vibrio Polysaccharide Synthesis and Virulence Factor Production by CdgC, a GGDEF-EAL Domain Protein, in Vibrio cholerae , 2007, Journal of bacteriology.

[317]  P. Reeves,et al.  Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid , 1996, Journal of bacteriology.

[318]  Hua-lin Li,et al.  Conversion of Staphylococcus epidermidis Strains from Commensal to Invasive by Expression of the ica Locus Encoding Production of Biofilm Exopolysaccharide , 2005, Infection and Immunity.

[319]  B. Ersbøll,et al.  Quantification of biofilm structures by the novel computer program COMSTAT. , 2000, Microbiology.

[320]  R. Kolter,et al.  Quorum-Sensing Regulation of the Biofilm Matrix Genes (pel) of Pseudomonas aeruginosa , 2007, Journal of bacteriology.

[321]  D. Hassett,et al.  Involvement of Nitric Oxide in Biofilm Dispersal of Pseudomonas aeruginosa , 2006, Journal of bacteriology.

[322]  S. Normark,et al.  AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium regulates at least two independent pathways , 2000, Molecular microbiology.

[323]  S. Kjelleberg,et al.  Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. , 1999, Microbiology.

[324]  Matthew R. Parsek,et al.  Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms , 2000, Nature.

[325]  S. Grzesiek,et al.  DgrA is a member of a new family of cyclic diguanosine monophosphate receptors and controls flagellar motor function in Caulobacter crescentus , 2007, Proceedings of the National Academy of Sciences.

[326]  Hans-Curt Flemming,et al.  The EPS Matrix: The “House of Biofilm Cells” , 2007, Journal of bacteriology.

[327]  W. Newton,et al.  CATALYTIC PROPERTIES OF TRYPTOPHANASE, A MULTIFUNCTIONAL PYRIDOXAL PHOSPHATE ENZYME. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[328]  K. Agladze,et al.  Spatial Periodicity of Escherichia coli K-12 Biofilm Microstructure Initiates during a Reversible, Polar Attachment Phase of Development and Requires the Polysaccharide Adhesin PGA , 2005, Journal of bacteriology.

[329]  R. Perry,et al.  Polyamines Are Essential for the Formation of Plague Biofilm , 2006, Journal of bacteriology.

[330]  P Stoodley,et al.  Survival strategies of infectious biofilms. , 2005, Trends in microbiology.

[331]  Lucy Shapiro,et al.  Cell cycle regulation in Caulobacter: location, location, location , 2007, Journal of Cell Science.

[332]  C. Ratledge,et al.  Iron metabolism in pathogenic bacteria. , 2000, Annual review of microbiology.

[333]  S. A. Craig,et al.  Characterization of Vibrio cholerae RyhB: the RyhB Regulon and Role of ryhB in Biofilm Formation , 2005, Infection and Immunity.

[334]  C. Francke,et al.  How Phosphotransferase System-Related Protein Phosphorylation Regulates Carbohydrate Metabolism in Bacteria , 2006, Microbiology and Molecular Biology Reviews.

[335]  Ryan S. Mueller,et al.  Vibrio cholerae Strains Possess Multiple Strategies for Abiotic and Biotic Surface Colonization , 2007, Journal of bacteriology.

[336]  R. Losick,et al.  A major protein component of the Bacillus subtilis biofilm matrix , 2006, Molecular microbiology.

[337]  A. Camilli,et al.  PilZ Domain Proteins Bind Cyclic Diguanylate and Regulate Diverse Processes in Vibrio cholerae* , 2007, Journal of Biological Chemistry.

[338]  P. Watnick,et al.  Steps in the development of a Vibrio cholerae El Tor biofilm , 1999, Molecular microbiology.

[339]  Yung-Hua Li,et al.  Esp-Independent Biofilm Formation by Enterococcus faecalis , 2004, Journal of bacteriology.

[340]  L. Regassa,et al.  Glucose and nonmaintained pH decrease expression of the accessory gene regulator (agr) in Staphylococcus aureus , 1992, Infection and immunity.

[341]  Jeffrey B. Kaplan,et al.  Differential Roles of Poly-N-Acetylglucosamine Surface Polysaccharide and Extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis Biofilms , 2007, Applied and Environmental Microbiology.

[342]  U. Römling,et al.  Hierarchical involvement of various GGDEF domain proteins in rdar morphotype development of Salmonella enterica serovar Typhimurium , 2006, Molecular microbiology.

[343]  M. Sugai,et al.  Effect of the Growth Rate of Pseudomonas aeruginosa Biofilms on the Susceptibility to Antimicrobial Agents: β-Lactams and Fluoroquinolones , 1999, Chemotherapy.

[344]  M. Schell,et al.  Ralstonia solanacearum requires type 4 pili to adhere to multiple surfaces and for natural transformation and virulence , 2002, Molecular microbiology.

[345]  P Stoodley,et al.  The influence of fluid shear and AICI3 on the material properties of Pseudomonas aeruginosa PAO1 and Desulfovibrio sp. EX265 biofilms. , 2001, Water science and technology : a journal of the International Association on Water Pollution Research.

[346]  Jay X. Tang,et al.  The Elastic Properties of the Caulobacter crescentus Adhesive Holdfast Are Dependent on Oligomers of N-Acetylglucosamine , 2005, Journal of bacteriology.

[347]  Peter Ross,et al.  Three cdg Operons Control Cellular Turnover of Cyclic Di-GMP in Acetobacter xylinum: Genetic Organization and Occurrence of Conserved Domains in Isoenzymes , 1998, Journal of bacteriology.

[348]  G. O’Toole,et al.  Innate and induced resistance mechanisms of bacterial biofilms. , 2008, Current Topics in Microbiology and Immunology.

[349]  S. Heeb,et al.  Regulatory roles of the GacS/GacA two-component system in plant-associated and other gram-negative bacteria. , 2001, Molecular plant-microbe interactions : MPMI.

[350]  U. Jenal,et al.  Mechanisms of cyclic-di-GMP signaling in bacteria. , 2006, Annual review of genetics.

[351]  B. Bassler,et al.  Regulation of Uptake and Processing of the Quorum-Sensing Autoinducer AI-2 in Escherichia coli , 2005, Journal of bacteriology.

[352]  Frederick M. Ausubel,et al.  BifA, a Cyclic-Di-GMP Phosphodiesterase, Inversely Regulates Biofilm Formation and Swarming Motility by Pseudomonas aeruginosa PA14 , 2007, Journal of bacteriology.

[353]  H. Videla,et al.  Microbiologically influenced corrosion: looking to the future. , 2005, International microbiology : the official journal of the Spanish Society for Microbiology.

[354]  N. Vats,et al.  Active detachment of Streptococcus mutans cells adhered to epon-hydroxylapatite surfaces coated with salivary proteins in vitro. , 2000, Archives of oral biology.

[355]  C. Wolz,et al.  Staphylococcus aureus CcpA Affects Biofilm Formation , 2008, Infection and Immunity.

[356]  Yoshihiro Hayakawa,et al.  A cyclic-di-GMP receptor required for bacterial exopolysaccharide production , 2007, Molecular microbiology.

[357]  J. Mattick,et al.  Identification of a novel gene, pilZ, essential for type 4 fimbrial biogenesis in Pseudomonas aeruginosa , 1996, Journal of bacteriology.

[358]  A. Linker,et al.  Production and Characterization of the Slime Polysaccharide of Pseudomonas aeruginosa , 1973, Journal of bacteriology.

[359]  M. Silby,et al.  Expression of the Pho regulon negatively regulates biofilm formation by Pseudomonas aureofaciens PA147‐2 , 2001, Molecular microbiology.

[360]  M. Béchet,et al.  Factors associated with the adherence and biofilm formation by Aeromonas caviae on glass surfaces , 2003, Journal of applied microbiology.

[361]  Chankyu Park,et al.  Complex regulation of csgD promoter activity by global regulatory proteins , 2003, Molecular microbiology.