Backone family of equations of state: 2. Nonpolar and polar fluid mixtures

In the BACKONE equations the Helmholtz energy F is written as the sum F = FH + FA + FD + FQ, where FH is the hard-body contribution, FA the attractive dispersion force contribution, FD the dipolar, and FQ the quadrupolar contribution. In Part 1 of this article (Muller et al., 1996a) the construction of BACKONE and its application to pure fluids were presented. In the extension to mixtures, for each term of F a specific mixing rule is used. This concept requires only one adjustable state-independent binary mixture parameter. To demonstrate the feasibility of this approach, predictions of phase equilibria, including a liquid–liquid equilibrium and other thermodynamic properties, are given for 20 binary fluid mixtures from the groups: nonpolar + nonpolar; nonpolar + dipolar; nonpolar + quadrupolar; and polar + polar.

[1]  Wolfgang Wagner,et al.  A new method for optimizing the structure of thermodynamic correlation equations , 1989 .

[2]  J. Magee,et al.  Measurements of molar heat capacity at constant volume: CV, m{xCH4 + (1 − x)C2H6, T = 100 to 320 K, p ⩽ 35 MPa} , 1989 .

[3]  J. Zollweg,et al.  Vapor-liquid equilibrium in the xenon + ethene system , 1985 .

[4]  J. Fischer,et al.  Construction and application of physically based equations of state: Part III. Correlative and predictive application to the refrigerants R22 and R152a , 1994 .

[5]  R. Kobayashi,et al.  Vapor-liquid equilibrium of the methane-carbon dioxide system at low temperatures , 1978 .

[6]  B. Lu,et al.  Isothermal vapor-liquid equilibriums in binary system propane-carbon dioxide , 1976 .

[7]  D. Katz,et al.  Phase Behavior of Binary Carbon Dioxide-Paraffin Systems , 1945 .

[8]  Martin Neumann,et al.  Reaction Field Simulations of Monatomic and Diatomic Dipolar Fluids , 1991 .

[9]  W. R. Anderson,et al.  Liquid-vapor equilibria at 250.00.deg.K for systems containing methane, ethane, and carbon dioxide , 1976 .

[10]  A. Kidnay,et al.  Liquid‐vapor equilibria at 112.00 K for systems containing nitrogen, argon, and methane , 1973 .

[11]  Sofia Calero,et al.  Description of alternative refrigerants with BACKONE equations , 1998 .

[12]  K. Chao,et al.  Augmented back equation of state for polar fluids , 1988 .

[13]  A. Fredenslund,et al.  Vapour-liquid equilibrium data for the systems C2H6 + N2, C2H4 + N2, C3H8 + N2, and C3H6 + N2 , 1977 .

[14]  S. B. Kiselev,et al.  Cubic crossover equation of state for mixtures , 1999 .

[15]  J. Fischer,et al.  Vapour liquid equilibria of Lennard-Jones model mixtures from the NpT plus test particle method , 1995 .

[16]  P. S. Chappelear,et al.  Vapor-liquid equilibrium of methane-n-pentane system at low temperatures and high pressures , 1972 .

[17]  J. Fischer,et al.  Construction and application of physically based equations of state: Part I. Modification of the BACK equation , 1992 .

[18]  Donald L. Katz,et al.  Phase Equilibria in the Carbon Dioxide–Methane System , 1954 .

[19]  K. Chao,et al.  Augmented BACK equation of state II: Polar fluid mixtures , 1988 .

[20]  A. J. Kidnay,et al.  Liquid-vapour phase equilibria in the N2CH4 system from 130 to 180 K , 1975 .

[21]  T. Boublı́k Hard convex body equation of state , 1975 .

[22]  S. Sandler,et al.  Computer simulation of molecular fluid mixtures: Results and two new one‐fluid models , 1993 .

[23]  Johann Fischer,et al.  Backone family of equations of state: 1. Nonpolar and polar pure fluids , 1996 .

[24]  T. S. Brown,et al.  Vapor—liquid equilibria in the carbon dioxide-ethane system , 1988 .

[25]  S. Lago,et al.  Thermodynamic perturbation theory for molecular liquid mixtures , 1983 .

[26]  J. Fischer,et al.  A hybrid equation of state for Stockmayer pure fluids and mixtures , 1996 .

[27]  J. Calado,et al.  Excess Gibbs Energy of Argon‐Methane Liquid Mixtures at 115.77°K , 1972 .

[28]  G. Thodos,et al.  Vapor-Liquid Equilibria for the Ethane-Propane System. , 1962 .

[29]  B. Lu,et al.  Vapor‐liquid equilibrium in the ethane‐carbon dioxide system , 1974 .

[30]  M. Hirata,et al.  BINARY VAPOR-LIQUID EQUILIBRIA OF CARBON DIOXIDE-LIGHT HYDROCARBONS AT LOW TEMPERATURE , 1974 .

[31]  Mark O. McLinden,et al.  An International Standard Equation of State for the Thermodynamic Properties of Refrigerant 123 (2,2‐Dichloro‐1,1,1‐Trifluoroethane) , 1994 .

[32]  B. Sage,et al.  Phase Equilibria in Hydrocarbon Systems. Volumetric and Phase Behavior of the Propane-Carbon Dioxide System , 1951 .

[33]  G. Iglesias-Silva,et al.  An equation of state for non-polar substances based on the generalized van der Waals model , 1993 .

[34]  J. Haile,et al.  Effect of molecular elongation on the quadrupolar free energy in diatomic fluids , 1988 .

[35]  A. Fredenslund,et al.  Vapour-liquid equilibrium of the CH4?Ar, CH4?CO, and AR?CO systems at elevated pressures , 1973 .

[36]  W. M. Haynes,et al.  Isochoric (p, Vm, x, T) measurements on (methane + ethane) from 100 to 320 K at pressures to 35 MPa☆ , 1985 .

[37]  Stephen S. Chen,et al.  Applications of the Augmented van der Waals Theory of Fluids.: I. Pure Fluids , 1977 .

[38]  A. Neumann,et al.  Dampf/Flüssigkeits-Gleichgewicht CO2/CH4 im Bereich tiefer Temperaturen und kleiner CO2-Molenbrüche , 1968 .

[39]  J. Fischer,et al.  A mixing rule for the quadrupolar contribution to the Helmholtz energy , 2000 .

[40]  A. Fredenslund,et al.  Measurement and prediction of equilibrium ratios for the C2H6+ CO2 system , 1974 .

[41]  Roland Span,et al.  An accurate Van der Waals-type equation of state for the Lennard-Jones fluid , 1996 .

[42]  A. Kidnay,et al.  Liquid + vapor equilibria in methane + ethene and in methane + ethane from 150.00 to 190.00 K , 1977 .

[43]  Nguyen Van Nhu,et al.  Excess properties and phase equilibria calculated from a generalized van der Waals equation of state for the example of the mixture methane + ethane , 1995 .

[44]  A. Kidnay,et al.  Liquid-vapor equilibriums at 270.00 K for systems containing nitrogen, methane, and carbon dioxide , 1978 .

[45]  T. S. Brown,et al.  Vapor-liquid equilibria in the nitrogen + carbon dioxide + ethane system , 1989 .

[46]  L. Staveley,et al.  Excess enthalpies and Gibbs free energies for nitrogen + methane at temperatures below the critical point of nitrogen , 1976 .

[47]  J. Ely,et al.  Thermophysical Properties of Fluids. II. Methane, Ethane, Propane, Isobutane, and Normal Butane , 1987 .

[48]  W. Akers,et al.  Carbon-Dioxide Propane System , 1954 .

[49]  J. Fischer,et al.  An equation of state for dipolar two-center Lennard–Jones molecules and its application to refrigerants , 1998 .

[50]  J. Fischer,et al.  Construction and application of physically based equations of state: Part II. The dipolar and quadrupolar contributions to the Helmholtz energy , 1992 .

[51]  J. Fischer,et al.  Simulation studies on mixtures of dipolar with nonpolar linear molecules. II. A mixing rule for the dipolar contribution to the Helmholtz energy , 1996 .

[52]  M. Nagel,et al.  Vapour-liquid equilibrium of ternary mixtures of the refrigerants R125, R143a and R134a , 1995 .

[53]  J. Calado,et al.  Thermodynamics of liquid methane+ethane , 1989 .

[54]  P. S. Chappelear,et al.  Dew point study in the vapor--liquid region of the methane--carbon dioxide system , 1976 .

[55]  Koichi Watanabe,et al.  Bubble-point pressures and liquid densities of binary R-125 + R-143a System , 1995 .

[56]  L. Q. Lobo,et al.  Thermodynamics of liquid mixtures of xenon and methyl fluoride , 1989 .

[57]  K. Ohgaki,et al.  Isothermal vapor-liquid equilibrium data for the ethane—carbon dioxide system at high pressures , 1977 .

[58]  G. Schneider,et al.  Fluid Phase Equilibria of the Binary Systems N2 + Ethane and N2 + Pentane Between 88 K and 313 K and at Pressures up to 200 MPa , 1985 .

[59]  R. J. Gugnoni,et al.  Carbon dioxide‐ethane phase equilibrium and densities from experimental measurements and the B‐W‐R equation , 1974 .

[60]  P. S. Chappelear,et al.  Low-temperature vapor-liquid equilibriums of nitrogen-methane system , 1974 .

[61]  A. Kreglewski Equilibrium properties of fluids and fluid mixtures , 1984 .

[62]  J. Fischer,et al.  Effect of molecular elongation on the dipolar free energy , 1993 .