Impulse control: Boolean programming and numerical algorithms

A numerical algorithmic approach to the impulse control problem is considered. Impulse controls are modelled by Boolean binary variables. The impulse Gateaux derivatives for impulse times, impulse volumes and Boolean variables are derived, and these are applied to the numerical algorithms. These algorithms require significantly less computation time and memory storage than the quasi-variational inequalities by Bensoussan-Lions. By using our algorithms, complicated models of hybrid or constrained systems can be more easily treated numerically than by using Pontryagin's Minimum Principle. Numerical experiments are performed for models on capacity expansion in a manufacturing plant, and on impulse control of Verhulst systems and Lotka-Volterra systems; the results confirm the effectiveness of the proposed method

[1]  R. Vidal Dynamic optimization: The calculus of variations and optimal control in economics and management: Morton I. KAMIEN and Nancy L. SCHWARTZ Volume 4 in: Dynamic Economics: Theory and Applications, North-Holland, New York, 1981, xi + 331 pages, Dfl.90.00 , 1982 .

[2]  J. R. Dorroh,et al.  A Multistate, Multicontrol Problem with Unbounded Controls , 1994 .

[3]  Per Olov Lindberg,et al.  Bregman Proximal Relaxation of Large-Scale 0–1 Problems , 2000, Comput. Optim. Appl..

[4]  D. Bertsekas Decomposition algorithms for large-scale nonconvex optimization problems , 1976, 1976 IEEE Conference on Decision and Control including the 15th Symposium on Adaptive Processes.

[5]  D. Bertsekas Convexification procedures and decomposition methods for nonconvex optimization problems , 1979 .

[6]  Jim Owens Planning the Production , 2006 .

[7]  R. G. Hawkins,et al.  Public Investment, the Rate of Return, and Optimal Fiscal Policy , 1970 .

[8]  E. Sheshinski,et al.  Optimal Pricing, Inflation, and the Cost of Price Adjustment , 1993 .

[9]  Kok Lay Teo,et al.  Solving 0–1 Programming Problems by a Penalty Approach , 1997 .

[10]  S. K. MIX,et al.  SUCCESSIVE APPROXIMATION METHODS FOR THE SOLUTION OF OPTIMAL CONTROL PROBLEMS , 2002 .

[11]  R. Rempala,et al.  On the maximum principle for deterministic impulse control problems , 1988 .

[12]  Karl Vind Control Systems with Jumps in the State Variables , 1967 .

[13]  Alain Bensoussan,et al.  Impulse Control and Quasi-Variational Inequalities , 1984 .

[14]  A. Blaquière,et al.  Impulsive optimal control with finite or infinite time horizon , 1985 .

[15]  Maurizio Falcone,et al.  ANALYSIS AND APPROXIMATION OF THE INFINITE-HORIZON PROBLEM WITH IMPULSIVE CONTROLS , 1997 .

[16]  C. C. Holt,et al.  Planning Production, Inventories, and Work Force. , 1962 .

[17]  V. Borkar,et al.  A unified framework for hybrid control: model and optimal control theory , 1998, IEEE Trans. Autom. Control..

[18]  A. J. van der Schaft,et al.  Complementarity modeling of hybrid systems , 1998, IEEE Trans. Autom. Control..

[19]  Bart De Schutter,et al.  Optimal Control of a Class of Linear Hybrid Systems with Saturation , 1999, SIAM J. Control. Optim..

[20]  Sanjoy K. Mitter,et al.  Successive approximation methods for the solution of optimal control problems , 1966, Autom..

[21]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[22]  A. Samoilenko,et al.  Impulsive differential equations , 1995 .

[23]  R. Glowinski,et al.  Numerical Analysis of Variational Inequalities , 1981 .

[24]  Christos G. Cassandras,et al.  Optimal control of a class of hybrid systems , 2001, IEEE Trans. Autom. Control..

[25]  Pierre-Louis Lions,et al.  Quasi-variational inequalities and ergodic impulse control , 1986 .

[26]  Elijah Polak,et al.  Optimization: Algorithms and Consistent Approximations , 1997 .

[27]  A. N. Sesekin,et al.  Dynamic Impulse Systems , 1997 .

[28]  P. Körner,et al.  An efficient method for obtaining sharp bounds for nonlinear boolean programming problems , 1992 .

[29]  B. Miller The generalized solutions of nonlinear optimization problems with impulse control , 1996 .

[30]  M. Petit Dynamic optimization. The calculus of variations and optimal control in economics and management : by Morton I. Kamien and Nancy L. Schwartz. Second Edition. North-Holland (Advanced Textbooks in Economics), Amsterdam and New York, 1991. Pp. xvii+377. ISBN0-444- 01609-0 , 1994 .

[31]  Knut Sydsæter,et al.  Optimal control theory with economic applications , 1987 .

[32]  M. Bardi,et al.  Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .

[33]  G. Thompson,et al.  Optimal control theory : applications to management science , 1984 .

[34]  Alberto Bressan,et al.  On differential systems with quadratic impulses and their applications to Lagrangian mechanics , 1993 .

[35]  O. Nelles,et al.  An Introduction to Optimization , 1996, IEEE Antennas and Propagation Magazine.