Principal components analysis for sparsely observed correlated functional data using a kernel smoothing approach
暂无分享,去创建一个
Jie Peng | Debashis Paul | D. Paul | Jie Peng
[1] R. Speicher,et al. Lectures on the Combinatorics of Free Probability: The free commutator , 2006 .
[2] P. Hall,et al. Properties of principal component methods for functional and longitudinal data analysis , 2006, math/0608022.
[3] Jeng-Min Chiou,et al. Functional clustering and identifying substructures of longitudinal data , 2007 .
[4] Dudley,et al. Real Analysis and Probability: Measurability: Borel Isomorphism and Analytic Sets , 2002 .
[5] Gareth M. James,et al. Functional linear discriminant analysis for irregularly sampled curves , 2001 .
[6] M. Yuan,et al. A Reproducing Kernel Hilbert Space Approach to Functional Linear Regression , 2010, 1211.2607.
[7] Jin-Ting Zhang,et al. Statistical inferences for functional data , 2007, 0708.2207.
[8] Debashis Paul,et al. CONSISTENCY OF RESTRICTED MAXIMUM LIKELIHOOD ESTIMATORS OF PRINCIPAL COMPONENTS , 2008, 0805.0465.
[9] F. Yao,et al. Penalized spline models for functional principal component analysis , 2006 .
[10] Z. Q. John Lu,et al. Nonparametric Functional Data Analysis: Theory And Practice , 2007, Technometrics.
[11] Lubos Prchal,et al. Changes in atmospheric radiation from the statistical point of view , 2007, Comput. Stat. Data Anal..
[12] Michael Ruogu Zhang,et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. , 1998, Molecular biology of the cell.
[13] Sudipto Banerjee,et al. Coregionalized Single‐ and Multiresolution Spatially Varying Growth Curve Modeling with Application to Weed Growth , 2006, Biometrics.
[14] K. J. Utikal,et al. Inference for Density Families Using Functional Principal Component Analysis , 2001 .
[15] P. Sarda,et al. Functional linear model , 1999 .
[16] Philippe Besse,et al. Simultaneous non-parametric regressions of unbalanced longitudinal data , 1997 .
[17] H. Müller,et al. Time-synchronized clustering of gene expression trajectories. , 2008, Biostatistics.
[18] Jie Peng,et al. A Geometric Approach to Maximum Likelihood Estimation of the Functional Principal Components From Sparse Longitudinal Data , 2007, 0710.5343.
[19] Jie Peng,et al. Distance-based clustering of sparsely observed stochastic processes, with applications to online auctions , 2008, 0805.0463.
[20] Colin O. Wu,et al. Nonparametric Mixed Effects Models for Unequally Sampled Noisy Curves , 2001, Biometrics.
[21] H. Cardot. Nonparametric estimation of smoothed principal components analysis of sampled noisy functions , 2000 .
[22] Catherine A. Sugar,et al. Principal component models for sparse functional data , 1999 .
[23] C. F. Sirmans,et al. Nonstationary multivariate process modeling through spatially varying coregionalization , 2004 .
[24] T. Tony Cai,et al. Prediction in functional linear regression , 2006 .
[25] Catherine A. Sugar,et al. Clustering for Sparsely Sampled Functional Data , 2003 .
[26] Joel L. Horowitz,et al. Methodology and convergence rates for functional linear regression , 2007, 0708.0466.
[27] H. Müller,et al. Functional Data Analysis for Sparse Longitudinal Data , 2005 .
[28] D. Paul,et al. Asymptotics of the leading sample eigenvalues for a spiked covariance model , 2004 .
[29] Arnab Maity,et al. Reduced Rank Mixed Effects Models for Spatially Correlated Hierarchical Functional Data , 2010, Journal of the American Statistical Association.
[30] C. Micchelli,et al. On multivariate -splines , 1989 .
[31] Tosio Kato. Perturbation theory for linear operators , 1966 .