Fully digital 1-D, 2-D and 3-D multiscroll chaos as hardware pseudo random number generators

This paper introduces the first fully digital implementation of 1-D, 2-D and 3-D multiscroll chaos using the sawtooth nonlinearity in a 3rd order ODE with the Euler approximation. Systems indicate chaotic behaviour through phase space boundedness and positive Lyapunov exponent. Low-significance bits form a PRNG and pass all tests in the NIST SP. 800-22 suite without post-processing. Real-time control of the number of scrolls allows distinct output streams with 2-D and 3-D multiscroll chaos enabling greater controllability. The proposed PRNGs are experimentally verified on a Xilinx Virtex 4 FPGA with logic utilization less than 1.25%, throughput up to 5.25 Gbits/s and up to 512 distinct output streams with low cross-correlation.

[1]  Mohammed Affan Zidan,et al.  The effect of numerical techniques on differential equation based chaotic generators , 2011, ICM 2011 Proceeding.

[2]  Henry Leung,et al.  Experimental verification of multidirectional multiscroll chaotic attractors , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[3]  M. Perc,et al.  Detecting chaos from a time series , 2005 .

[4]  J. Suykens,et al.  Experimental confirmation of 3- and 5-scroll attractors from a generalized Chua's circuit , 2000 .

[5]  A. S. Mansingka,et al.  Design, implementation and analysis of fully digital 1-D controllable multiscroll chaos , 2011, ICM 2011 Proceeding.

[6]  Mohammed Affan Zidan,et al.  Random number generation based on digital differential chaos , 2011, 2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS).

[7]  Lih-Yuan Deng,et al.  Period Extension and Randomness Enhancement Using High-Throughput Reseeding-Mixing PRNG , 2012, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[8]  Guanrong Chen,et al.  Generating Multiscroll Chaotic Attractors: Theories, Methods and Applications , 2006 .

[9]  Mohammed Affan Zidan,et al.  Controllable V-Shape multiscroll Butterfly Attractor: System and Circuit Implementation , 2012, Int. J. Bifurc. Chaos.

[10]  Julien Clinton Sprott,et al.  A new class of chaotic circuit , 2000 .

[11]  Massimo Alioto,et al.  A feedback strategy to improve the entropy of a chaos-based random bit generator , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[12]  Wen-Wei Lin,et al.  A Fast Digital Chaotic Generator for Secure Communication , 2010, Int. J. Bifurc. Chaos.

[13]  Elaine B. Barker,et al.  A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications , 2000 .

[14]  Ángel Rodríguez-Vázquez,et al.  Integrated chaos generators , 2002 .

[15]  Massimo Alioto,et al.  A Class of Maximum-Period Nonlinear Congruential Generators Derived From the Rényi Chaotic Map , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[16]  Chien-Chih Huang,et al.  A nonlinear PRNG using digitized logistic map with self-reseeding method , 2010, Proceedings of 2010 International Symposium on VLSI Design, Automation and Test.

[17]  Ahmed S. Elwakil,et al.  Generation of n-scroll chaos using nonlinear transconductors , 2003, Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03..

[18]  Wen-Wei Lin,et al.  Randomness Enhancement Using Digitalized Modified Logistic Map , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.

[19]  Mohammed Affan Zidan,et al.  Analysis of bus width and delay on a fully digital signum nonlinearity chaotic oscillator , 2011, 2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS).

[20]  Ahmed S. Elwakil,et al.  1-d digitally-Controlled multiscroll Chaos Generator , 2007, Int. J. Bifurc. Chaos.