Quasi-Newton Methods on Grassmannians and Multilinear Approximations of Tensors
暂无分享,去创建一个
[1] Joos Vandewalle,et al. Dimensionality Reduction in ICA and Rank-(R1, R2, ..., RN) Reduction in Multilinear Algebra , 2004, ICA.
[2] John E. Dennis,et al. Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.
[3] S. H. Cheng,et al. A Modified Cholesky Algorithm Based on a Symmetric Indefinite Factorization , 1998, SIAM J. Matrix Anal. Appl..
[4] Joos Vandewalle,et al. A Grassmann-Rayleigh Quotient Iteration for Dimensionality Reduction in ICA , 2004, ICA.
[5] F. L. Hitchcock. The Expression of a Tensor or a Polyadic as a Sum of Products , 1927 .
[6] Lennart Simonsson. Subspace Computations via Matrix Decompositions and Geometric Optimization , 2006 .
[7] David E. Booth,et al. Multi-Way Analysis: Applications in the Chemical Sciences , 2005, Technometrics.
[8] R. Tennant. Algebra , 1941, Nature.
[9] T. Yokonuma. Tensor Spaces and Exterior Algebra , 1992 .
[10] Vin de Silva,et al. Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.
[11] R. Schnabel,et al. A NEW DERIVATION OF SYMMETRIC POSITIVE DEFINITE SECANT UPDATES , 1980 .
[12] D K Smith,et al. Numerical Optimization , 2001, J. Oper. Res. Soc..
[13] Pierre-Antoine Absil,et al. Trust-Region Methods on Riemannian Manifolds , 2007, Found. Comput. Math..
[14] L. Lathauwer,et al. Dimensionality reduction for higher-order tensors: algorithms and applications , 2008 .
[15] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[16] Pierre Comon,et al. Blind identification of under-determined mixtures based on the characteristic function , 2006, Signal Process..
[17] Ganesh R. Naik,et al. Introduction: Independent Component Analysis , 2012 .
[18] Eva Lundstr. Adaptive Eigenvalue Computations Using Newton's Method on the Grassmann Manifold , 1999 .
[19] Pierre Comon,et al. Blind identification of under-determined mixtures based on the characteristic function , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..
[20] J. J. Moré,et al. Quasi-Newton Methods, Motivation and Theory , 1974 .
[21] W. Boothby. An introduction to differentiable manifolds and Riemannian geometry , 1975 .
[22] B. Khoromskij,et al. Low rank Tucker-type tensor approximation to classical potentials , 2007 .
[23] L. Lathauwer,et al. Dimensionality reduction in higher-order signal processing and rank-(R1,R2,…,RN) reduction in multilinear algebra , 2004 .
[24] Pierre Comon,et al. Decomposition of quantics in sums of powers of linear forms , 1996, Signal Process..
[25] Alan Edelman,et al. The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..
[26] Lars Kai Hansen,et al. ERPWAVELAB A toolbox for multi-channel analysis of time–frequency transformed event related potentials , 2007, Journal of Neuroscience Methods.
[27] Jorge Nocedal,et al. Representations of quasi-Newton matrices and their use in limited memory methods , 1994, Math. Program..
[28] S. D. Cutkosky,et al. Multilinear Algebra , 2019, Differential Forms.
[29] Joos Vandewalle,et al. On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..
[30] Boris N. Khoromskij,et al. Verification of the cross 3D algorithm on quantum chemistry data , 2008 .
[31] H. Walker. Quasi-Newton Methods , 1978 .
[32] Lieven De Lathauwer. Tucker compression, parallel factor analysis and block term decompositions : new results , 2010 .
[33] F. L. Hitchcock. Multiple Invariants and Generalized Rank of a P‐Way Matrix or Tensor , 1928 .
[34] Gene H. Golub,et al. Genericity And Rank Deficiency Of High Order Symmetric Tensors , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.
[35] D. Gabay. Minimizing a differentiable function over a differential manifold , 1982 .
[36] L. Lathauwer,et al. On the best low multilinear rank approximation of higher-order tensors , 2010 .
[37] Y. Wong,et al. Differentiable Manifolds , 2009 .
[38] Joos Vandewalle,et al. A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[39] Eugene E. Tyrtyshnikov,et al. Tucker Dimensionality Reduction of Three-Dimensional Arrays in Linear Time , 2008, SIAM J. Matrix Anal. Appl..
[40] Tamara G. Kolda,et al. Categories and Subject Descriptors: G.4 [Mathematics of Computing]: Mathematical Software— , 2022 .
[41] Berkant Savas,et al. A Newton-Grassmann Method for Computing the Best Multilinear Rank-(r1, r2, r3) Approximation of a Tensor , 2009, SIAM J. Matrix Anal. Appl..
[42] Boris N. Khoromskij,et al. Multigrid Accelerated Tensor Approximation of Function Related Multidimensional Arrays , 2009, SIAM J. Sci. Comput..
[43] Gene H. Golub,et al. Symmetric Tensors and Symmetric Tensor Rank , 2008, SIAM J. Matrix Anal. Appl..
[44] G. Golub,et al. A tensor higher-order singular value decomposition for integrative analysis of DNA microarray data from different studies , 2007, Proceedings of the National Academy of Sciences.
[45] L. Lathauwer,et al. Signal Processing based on Multilinear Algebra , 1997 .
[46] Ed Anderson,et al. LAPACK Users' Guide , 1995 .
[47] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[48] Berkant Savas. Toolbox for Grassmann Manifold Computations , 2008 .
[49] D. Goldfarb. Factorized variable metric methods for unconstrained optimization , 1976 .
[50] Sabine Van Huffel,et al. Best Low Multilinear Rank Approximation of Higher-Order Tensors, Based on the Riemannian Trust-Region Scheme , 2011, SIAM J. Matrix Anal. Appl..
[51] Levent Tunçel,et al. Optimization algorithms on matrix manifolds , 2009, Math. Comput..
[52] L. Tucker,et al. Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.
[53] Demetri Terzopoulos,et al. Multilinear subspace analysis of image ensembles , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..
[54] Phillip A. Regalia,et al. On the Best Rank-1 Approximation of Higher-Order Supersymmetric Tensors , 2001, SIAM J. Matrix Anal. Appl..
[55] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..