Bisociative Knowledge Discovery

Knowledge discovery generally focuses on finding patterns within a reasonably well connected domain of interest. In this article we outline a framework for the discovery of new connections between domains (so called bisociations), supporting the creative discovery process in a more powerful way. We motivate this approach, show the difference to classical data analysis and conclude by describing a number of different types of domain-crossing connections.

[1]  Tim Berners-Lee,et al.  Linked Data - The Story So Far , 2009, Int. J. Semantic Web Inf. Syst..

[2]  Fang Zhou,et al.  Network Simplification with Minimal Loss of Connectivity , 2010, 2010 IEEE International Conference on Data Mining.

[3]  Elizabeth Chang,et al.  Semi-Automatic Ontology Extension Using Spreading Activation , 2005 .

[4]  James Moody,et al.  Peer influence groups: identifying dense clusters in large networks , 2001, Soc. Networks.

[5]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[6]  A. Einstein Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt [AdP 17, 132 (1905)] , 2005, Annalen der Physik.

[7]  Marvin Minsky,et al.  K-Lines: A theory of Memory , 1980, Cogn. Sci..

[8]  Therese C. Biedl,et al.  Simplifying Flow Networks , 2000, MFCS.

[9]  Heidrun Schumann,et al.  CGV - An interactive graph visualization system , 2009, Comput. Graph..

[10]  Christian Tominski,et al.  Event based visualization for user centered visual analysis , 2006 .

[11]  Kristin A. Cook,et al.  Illuminating the Path: The Research and Development Agenda for Visual Analytics , 2005 .

[12]  Ben Shneiderman,et al.  Strategies for evaluating information visualization tools: multi-dimensional in-depth long-term case studies , 2006, BELIV '06.

[13]  Francis T. Durso,et al.  Network Structures in Proximity Data , 1989 .

[14]  Catherine Plaisant,et al.  The challenge of information visualization evaluation , 2004, AVI.

[15]  Ramanathan V. Guha,et al.  Cyc: toward programs with common sense , 1990, CACM.

[16]  H. Chertkow,et al.  Semantic memory , 2002, Current neurology and neuroscience reports.

[17]  Jiawei Han Mining Heterogeneous Information Networks by Exploring the Power of Links , 2009, Discovery Science.

[18]  Gerard Salton,et al.  Automatic Information Organization And Retrieval , 1968 .

[19]  Marcus P. Adams,et al.  Empirical evidence and the knowledge-that/knowledge-how distinction , 2009, Synthese.

[20]  M. Ross Quillian,et al.  A revised design for an understanding machine , 1962, Mech. Transl. Comput. Linguistics.

[21]  Hannu Toivonen,et al.  Finding reliable subgraphs from large probabilistic graphs , 2008, Data Mining and Knowledge Discovery.

[22]  Jiawei Han,et al.  Parallel PathFinder Algorithms for Mining Structures from Graphs , 2009, 2009 Ninth IEEE International Conference on Data Mining.

[23]  Z W Birnbaum,et al.  ON THE IMPORTANCE OF DIFFERENT COMPONENTS IN A MULTICOMPONENT SYSTEM , 1968 .

[24]  Jonathan Schaeffer,et al.  A World Championship Caliber Checkers Program , 1992, Artif. Intell..

[25]  Janice Ginny Redish,et al.  Expanding usability testing to evaluate complex systems , 2007 .

[26]  M. Stoer Design of Survivable Networks , 1993 .

[27]  Clayton T. Morrison,et al.  Structure-Mapping vs . High-level Perception : The Mistaken Fight Over The Explanation of Analogy , 1995 .

[28]  Oscar Cordón,et al.  A new variant of the Pathfinder algorithm to generate large visual science maps in cubic time , 2008, Inf. Process. Manag..

[29]  Ronald N. Kostoff,et al.  Literature-Related Discovery (LRD): Introduction and background , 2008 .

[30]  Hannu Toivonen,et al.  Link Discovery in Graphs Derived from Biological Databases , 2006, DILS.

[31]  D. Gentner Structure‐Mapping: A Theoretical Framework for Analogy* , 1983 .

[32]  Gerard Salton,et al.  On the use of spreading activation methods in automatic information , 1988, SIGIR '88.

[33]  Matthieu Latapy,et al.  Computing Communities in Large Networks Using Random Walks , 2004, J. Graph Algorithms Appl..

[34]  J. Gero,et al.  A Computational Framework for the Study of Creativity and Innovation in Design: Effects of Social Ties , 2004 .

[35]  F. Barron Putting creativity to work. , 1988 .

[36]  Tobias Kötter,et al.  Towards Creative Information Exploration Based on Koestler's Concept of Bisociation , 2012, Bisociative Knowledge Discovery.

[37]  Rogers P. Hall,et al.  Computational Approaches to Analogical Reasoning: A Comparative Analysis , 1989, Artif. Intell..

[38]  Sophia Ananiadou,et al.  Text mining and its potential applications in systems biology. , 2006, Trends in biotechnology.

[39]  Brian Falkenhainer,et al.  The Structure-Mapping Engine: Algorithm and Examples , 1989, Artif. Intell..

[40]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .

[41]  Danny Ziyi Chen,et al.  Efficient Algorithms for Simplifying Flow Networks , 2005, COCOON.

[42]  Brian Falkenhainer,et al.  The Structure-Mapping Engine * , 2003 .

[43]  James M. Higgins 101 Creative Problem Solving Techniques: The Handbook of New Ideas for Business , 1994 .

[44]  Tanja Bekhuis Conceptual biology, hypothesis discovery, and text mining: Swanson's legacy , 2006, Biomedical digital libraries.

[45]  M. Braga,et al.  Exploratory Data Analysis , 2018, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[46]  Andreas Nürnberger,et al.  Automatic Evaluation of User Adaptive Interfaces for Information Organization and Exploration , 2010 .

[47]  J. Natarajan,et al.  Knowledge Discovery in Biology and Biotechnology Texts: A Review of Techniques, Evaluation Strategies, and Applications , 2005, Critical reviews in biotechnology.

[48]  Ganesh S. Oak Information Visualization Introduction , 2022 .

[49]  Dedre Gentner,et al.  Analogical Processes in Human Thinking and Learning , 2010 .

[50]  I. Good A FIVE-YEAR PLAN FOR AUTOMATIC CHESS , 2013 .

[51]  Godfried T. Toussaint,et al.  The relative neighbourhood graph of a finite planar set , 1980, Pattern Recognit..

[52]  Kenneth McGarry,et al.  A survey of interestingness measures for knowledge discovery , 2005, The Knowledge Engineering Review.

[53]  J. Gero Computational Models of Innovative and Creative Design Processes , 2000 .

[54]  Vitaly Osipov,et al.  The Filter-Kruskal Minimum Spanning Tree Algorithm , 2009, ALENEX.

[55]  Peter D. Karp,et al.  OKBC: A Programmatic Foundation for Knowledge Base Interoperability , 1998, AAAI/IAAI.

[56]  Margaret A. Boden,et al.  Computer Models of Creativity , 2009, AI Mag..

[57]  Christos Faloutsos,et al.  Fast discovery of connection subgraphs , 2004, KDD.

[58]  David J. Chalmers,et al.  High-level perception, representation, and analogy: a critique of artificial intelligence methodology , 1992, J. Exp. Theor. Artif. Intell..

[59]  D. Swanson Fish Oil, Raynaud's Syndrome, and Undiscovered Public Knowledge , 2015, Perspectives in biology and medicine.

[60]  Fang Zhou,et al.  A Framework for Path-Oriented Network Simplification , 2010, IDA.

[61]  D. Simonton Individual differences, developmental changes, and social context , 1994, Behavioral and Brain Sciences.

[62]  V. Goel,et al.  Towards a Theory of Thinking , 2010 .

[63]  Fang Zhou,et al.  Review of BisoNet Abstraction Techniques , 2012, Bisociative Knowledge Discovery.