A posteriori error estimators for convection--diffusion eigenvalue problems

A posteriori error estimators for convection–diffusion eigenvalue model problems are discussed in Heuveline and Rannacher (2001) [17] in the context of the dual-weighted residual method (DWR). This paper directly addresses the variational formulation rather than the non-linear ansatz of Becker and Rannacher for some convection–diffusion model problem and presents a posteriori error estimators for the eigenvalue error based on averaging techniques. Two different postprocessing techniques attached to the DWR paradigm plus two new dual-weighted a posteriori error estimators are also presented. The first new estimator utilises an auxiliary Raviart–Thomas mixed finite element method and the second exploits an averaging technique in combination with ideas of DWR. The six a posteriori error estimators are compared in three numerical examples and illustrate reliability and efficiency and the dependence of generic constants on the size of the eigenvalue or the convection coefficient.

[1]  Aihui Zhou,et al.  Adaptive finite element algorithms for eigenvalue problems based on local averaging type a posteriori error estimates , 2006, Adv. Comput. Math..

[2]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[3]  Rolf Rannacher,et al.  A posteriori error control for finite element approximations of elliptic eigenvalue problems , 2001, Adv. Comput. Math..

[4]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[5]  Lloyd N. Trefethen,et al.  Computed eigenmodes of planar regions , 2005 .

[6]  Carsten Carstensen,et al.  An oscillation-free adaptive FEM for symmetric eigenvalue problems , 2011, Numerische Mathematik.

[7]  Ricardo G. Durán,et al.  A Posteriori Error Estimates for the Finite Element Approximation of Eigenvalue Problems , 2003 .

[8]  J. Tinsley Oden,et al.  ERROR ESTIMATION OF EIGENFREQUENCIES FOR ELASTICITY AND SHELL PROBLEMS , 2003 .

[9]  R. RannacherInstitut,et al.  Weighted a Posteriori Error Control in Fe Methods , 1995 .

[10]  Carsten Carstensen,et al.  All first-order averaging techniques for a posteriori finite element error control on unstructured grids are efficient and reliable , 2003, Math. Comput..

[11]  Carsten Carstensen,et al.  An adaptive homotopy approach for non-selfadjoint eigenvalue problems , 2011, Numerische Mathematik.

[12]  Endre Süli,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[13]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[14]  Mats G. Larson,et al.  A Posteriori and a Priori Error Analysis for Finite Element Approximations of Self-Adjoint Elliptic Eigenvalue Problems , 2000, SIAM J. Numer. Anal..

[15]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[16]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[17]  Brigitte Maier,et al.  Mixed And Hybrid Finite Element Methods Springer Series In Computational Mathematics , 2016 .

[18]  Tosio Kato Perturbation theory for linear operators , 1966 .

[19]  H. Weinberger,et al.  An optimal Poincaré inequality for convex domains , 1960 .

[20]  Eduardo M. Garau,et al.  Convergence of adaptive finite element methods for eigenvalue problems , 2008, 0803.0365.

[21]  Rolf Rannacher,et al.  Adaptive FEM for eigenvalue problems , 2003 .

[22]  Alexandre Ern,et al.  A Posteriori Control of Modeling Errors and Discretization Errors , 2003, Multiscale Model. Simul..

[23]  Gene H. Golub,et al.  Matrix computations , 1983 .

[24]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[25]  Stefan A. Sauter,et al.  hp-Finite Elements for Elliptic Eigenvalue Problems: Error Estimates Which Are Explicit with Respect to Lambda, h, and p , 2010, SIAM J. Numer. Anal..

[26]  Paul Houston,et al.  Adaptive Discontinuous Galerkin Methods for Eigenvalue Problems Arising in Incompressible Fluid Flows , 2009, SIAM J. Sci. Comput..

[27]  Nils-Erik Wiberg,et al.  Superconvergent patch recovery of finite‐element solution and a posteriori L2 norm error estimate , 1994 .

[28]  Carsten Carstensen,et al.  Estimation of Higher Sobolev Norm from Lower Order Approximation , 2004, SIAM J. Numer. Anal..

[29]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[30]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[31]  Stefano Giani,et al.  A Convergent Adaptive Method for Elliptic Eigenvalue Problems , 2009, SIAM J. Numer. Anal..

[32]  Rolf Rannacher,et al.  Adaptive finite element solution of eigenvalue problems: Balancing of discretization and iteration error , 2010, J. Num. Math..