A posteriori error estimators for convection--diffusion eigenvalue problems
暂无分享,去创建一个
[1] Aihui Zhou,et al. Adaptive finite element algorithms for eigenvalue problems based on local averaging type a posteriori error estimates , 2006, Adv. Comput. Math..
[2] P. Raviart,et al. A mixed finite element method for 2-nd order elliptic problems , 1977 .
[3] Rolf Rannacher,et al. A posteriori error control for finite element approximations of elliptic eigenvalue problems , 2001, Adv. Comput. Math..
[4] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[5] Lloyd N. Trefethen,et al. Computed eigenmodes of planar regions , 2005 .
[6] Carsten Carstensen,et al. An oscillation-free adaptive FEM for symmetric eigenvalue problems , 2011, Numerische Mathematik.
[7] Ricardo G. Durán,et al. A Posteriori Error Estimates for the Finite Element Approximation of Eigenvalue Problems , 2003 .
[8] J. Tinsley Oden,et al. ERROR ESTIMATION OF EIGENFREQUENCIES FOR ELASTICITY AND SHELL PROBLEMS , 2003 .
[9] R. RannacherInstitut,et al. Weighted a Posteriori Error Control in Fe Methods , 1995 .
[10] Carsten Carstensen,et al. All first-order averaging techniques for a posteriori finite element error control on unstructured grids are efficient and reliable , 2003, Math. Comput..
[11] Carsten Carstensen,et al. An adaptive homotopy approach for non-selfadjoint eigenvalue problems , 2011, Numerische Mathematik.
[12] Endre Süli,et al. Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.
[13] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .
[14] Mats G. Larson,et al. A Posteriori and a Priori Error Analysis for Finite Element Approximations of Self-Adjoint Elliptic Eigenvalue Problems , 2000, SIAM J. Numer. Anal..
[15] L. R. Scott,et al. Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .
[16] Chao Yang,et al. ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.
[17] Brigitte Maier,et al. Mixed And Hybrid Finite Element Methods Springer Series In Computational Mathematics , 2016 .
[18] Tosio Kato. Perturbation theory for linear operators , 1966 .
[19] H. Weinberger,et al. An optimal Poincaré inequality for convex domains , 1960 .
[20] Eduardo M. Garau,et al. Convergence of adaptive finite element methods for eigenvalue problems , 2008, 0803.0365.
[21] Rolf Rannacher,et al. Adaptive FEM for eigenvalue problems , 2003 .
[22] Alexandre Ern,et al. A Posteriori Control of Modeling Errors and Discretization Errors , 2003, Multiscale Model. Simul..
[23] Gene H. Golub,et al. Matrix computations , 1983 .
[24] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[25] Stefan A. Sauter,et al. hp-Finite Elements for Elliptic Eigenvalue Problems: Error Estimates Which Are Explicit with Respect to Lambda, h, and p , 2010, SIAM J. Numer. Anal..
[26] Paul Houston,et al. Adaptive Discontinuous Galerkin Methods for Eigenvalue Problems Arising in Incompressible Fluid Flows , 2009, SIAM J. Sci. Comput..
[27] Nils-Erik Wiberg,et al. Superconvergent patch recovery of finite‐element solution and a posteriori L2 norm error estimate , 1994 .
[28] Carsten Carstensen,et al. Estimation of Higher Sobolev Norm from Lower Order Approximation , 2004, SIAM J. Numer. Anal..
[29] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[30] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[31] Stefano Giani,et al. A Convergent Adaptive Method for Elliptic Eigenvalue Problems , 2009, SIAM J. Numer. Anal..
[32] Rolf Rannacher,et al. Adaptive finite element solution of eigenvalue problems: Balancing of discretization and iteration error , 2010, J. Num. Math..