Emerging fluorescent protein technologies.

[1]  L. Looger,et al.  Erratum: Rational design of a high-affinity, fast, red calcium indicator R-CaMP2 , 2015, Nature Methods.

[2]  Misha B. Ahrens,et al.  Labeling of active neural circuits in vivo with designed calcium integrators , 2015, Science.

[3]  Robert E Campbell,et al.  Ratiometric biosensors based on dimerization-dependent fluorescent protein exchange , 2015, Nature Methods.

[4]  Aleksander Rebane,et al.  A long Stokes shift red fluorescent Ca2+ indicator protein for two-photon and ratiometric imaging , 2014, Nature Communications.

[5]  Hui-wang Ai,et al.  A highly responsive and selective fluorescent probe for imaging physiological hydrogen sulfide. , 2014, Biochemistry.

[6]  Robert E. Campbell,et al.  Red fluorescent genetically encoded Ca2+ indicators for use in mitochondria and endoplasmic reticulum , 2014, The Biochemical journal.

[7]  Robert E Campbell,et al.  Microfluidic cell sorter-aided directed evolution of a protein-based calcium ion indicator with an inverted fluorescent response. , 2014, Integrative biology : quantitative biosciences from nano to macro.

[8]  B. Edgar,et al.  Fly-FUCCI: A versatile tool for studying cell proliferation in complex tissues. , 2014, Cell reports.

[9]  Michael Z. Lin,et al.  High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor , 2014, Nature Neuroscience.

[10]  Michael Z. Lin,et al.  Non-invasive intravital imaging of cellular differentiation with a bright red-excitable fluorescent protein , 2014, Nature Methods.

[11]  Hau B. Nguyen,et al.  A New Protein-Protein Interaction Sensor Based on Tripartite Split-GFP Association , 2013, Scientific Reports.

[12]  Hui-wang Ai,et al.  Genetically encoded fluorescent probe for the selective detection of peroxynitrite. , 2013, Journal of the American Chemical Society.

[13]  B. Roska,et al.  A Nanobody-Based System Using Fluorescent Proteins as Scaffolds for Cell-Specific Gene Manipulation , 2013, Cell.

[14]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[15]  S. Boxer,et al.  GFP variants with alternative β-strands and their application as light-driven protease sensors: a tale of two tails. , 2013, Journal of the American Chemical Society.

[16]  T. Weissman,et al.  Zebrabow: multispectral cell labeling for cell tracing and lineage analysis in zebrafish , 2013, Development.

[17]  Takeharu Nagai,et al.  Improved orange and red Ca²± indicators and photophysical considerations for optogenetic applications. , 2013, ACS chemical neuroscience.

[18]  Stefan R. Pulver,et al.  Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics , 2013, Front. Mol. Neurosci..

[19]  Justin D. Vrana,et al.  Optogenetic control of cell function using engineered photoreceptors , 2013, Biology of the cell.

[20]  Takeharu Nagai,et al.  Highlightable Ca2+ indicators for live cell imaging. , 2013, Journal of the American Chemical Society.

[21]  Atsushi Miyawaki,et al.  Visualization of cell cycle in mouse embryos with Fucci2 reporter directed by Rosa26 promoter , 2013, Development.

[22]  Robert E Campbell,et al.  Dimerization-dependent green and yellow fluorescent proteins. , 2012, ACS synthetic biology.

[23]  Michael Z. Lin,et al.  Optical Control of Protein Activity by Fluorescent Protein Domains , 2012, Science.

[24]  Michael Z. Lin,et al.  Optical Control of Protein Activity by Fluorescent Protein Domains , 2012, Science.

[25]  Yutaka Kodama,et al.  Bimolecular fluorescence complementation (BiFC): a 5-year update and future perspectives. , 2012, BioTechniques.

[26]  Walther Akemann,et al.  Imaging neural circuit dynamics with a voltage-sensitive fluorescent protein. , 2012, Journal of neurophysiology.

[27]  Jasper Akerboom,et al.  Optimization of a GCaMP Calcium Indicator for Neural Activity Imaging , 2012, The Journal of Neuroscience.

[28]  Michael Z. Lin,et al.  Fluorescent and photo-oxidizing TimeSTAMP tags track protein fates in light and electron microscopy , 2012, Nature Neuroscience.

[29]  Vincent A. Pieribone,et al.  Single Action Potentials and Subthreshold Electrical Events Imaged in Neurons with a Fluorescent Protein Voltage Probe , 2012, Neuron.

[30]  Michael Z. Lin,et al.  Improving FRET dynamic range with bright green and red fluorescent proteins , 2012, Nature Methods.

[31]  Philipp J. Keller,et al.  Tandem fluorescent protein timers for in vivo analysis of protein dynamics , 2012, Nature Biotechnology.

[32]  Hui-wang Ai,et al.  Reaction-based genetically encoded fluorescent hydrogen sulfide sensors. , 2012, Journal of the American Chemical Society.

[33]  Julien Gravier,et al.  Fluorescent Nanoprobes Dedicated to in Vivo Imaging: From Preclinical Validations to Clinical Translation , 2012, Molecules.

[34]  Robert E Campbell,et al.  A fluorogenic red fluorescent protein heterodimer. , 2012, Chemistry & biology.

[35]  S. Boxer,et al.  Thermodynamics, kinetics, and photochemistry of β-strand association and dissociation in a split-GFP system. , 2011, Journal of the American Chemical Society.

[36]  Yongxin Zhao,et al.  An Expanded Palette of Genetically Encoded Ca2+ Indicators , 2011, Science.

[37]  S. Boxer,et al.  Light-activated reassembly of split green fluorescent protein. , 2011, Journal of the American Chemical Society.

[38]  S. Lindman,et al.  In vivo protein stabilization based on fragment complementation and a split GFP system , 2010, Proceedings of the National Academy of Sciences.

[39]  M. Ehlers,et al.  Rapid blue light induction of protein interactions in living cells , 2010, Nature Methods.

[40]  Konstantin A Lukyanov,et al.  Near-infrared fluorescent proteins , 2010, Nature Methods.

[41]  Walther Akemann,et al.  Imaging brain electric signals with genetically targeted voltage-sensitive fluorescent proteins , 2010, Nature Methods.

[42]  Joerg Bewersdorf,et al.  Far-red fluorescent protein excitable with red lasers for flow cytometry and superresolution STED nanoscopy. , 2010, Biophysical journal.

[43]  S. Snyder,et al.  Hydrogen sulfide as a gasotransmitter , 2010, Journal of neurochemistry.

[44]  Michael Z. Lin,et al.  Autofluorescent proteins with excitation in the optical window for intravital imaging in mammals. , 2009, Chemistry & biology.

[45]  Robert E Campbell,et al.  Fluorescent-protein-based biosensors: modulation of energy transfer as a design principle. , 2009, Analytical chemistry.

[46]  Vladislav V Verkhusha,et al.  Monomeric fluorescent timers that change color from blue to red report on cellular trafficking. , 2009, Nature chemical biology.

[47]  R. Nitschke,et al.  Quantum dots versus organic dyes as fluorescent labels , 2008, Nature Methods.

[48]  Yasushi Okamura,et al.  Improving membrane voltage measurements using FRET with new fluorescent proteins , 2008, Nature Methods.

[49]  Walther Akemann,et al.  Engineering of a Genetically Encodable Fluorescent Voltage Sensor Exploiting Fast Ci-VSP Voltage-Sensing Movements , 2008, PloS one.

[50]  Paul J. Choi,et al.  Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. , 2008, Annual review of biophysics.

[51]  Atsushi Miyawaki,et al.  Visualizing Spatiotemporal Dynamics of Multicellular Cell-Cycle Progression , 2008, Cell.

[52]  R. W. Draft,et al.  Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system , 2007, Nature.

[53]  Walther Akemann,et al.  Engineering and Characterization of an Enhanced Fluorescent Protein Voltage Sensor , 2007, Neuroscience Research.

[54]  Peter G Schultz,et al.  Efficient incorporation of unnatural amino acids into proteins in Escherichia coli , 2006, Nature Methods.

[55]  Patrick S Daugherty,et al.  Evolutionary optimization of fluorescent proteins for intracellular FRET , 2005, Nature Biotechnology.

[56]  R. Tsien,et al.  Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein , 2004, Nature Biotechnology.

[57]  Devin Oglesbee,et al.  Investigating Mitochondrial Redox Potential with Redox-sensitive Green Fluorescent Protein Indicators* , 2004, Journal of Biological Chemistry.

[58]  Chang‐Deng Hu,et al.  Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis , 2003, Nature Biotechnology.

[59]  A S Verkman,et al.  Green fluorescent protein‐based halide indicators with improved chloride and iodide affinities , 2001, FEBS letters.

[60]  M. Ohkura,et al.  A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein , 2001, Nature Biotechnology.

[61]  L. Regan,et al.  Antiparallel Leucine Zipper-Directed Protein Reassembly: Application to the Green Fluorescent Protein , 2000 .

[62]  S. Lukyanov,et al.  Fluorescent proteins from nonbioluminescent Anthozoa species , 1999, Nature Biotechnology.

[63]  Gero Miesenböck,et al.  Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins , 1998, Nature.

[64]  Takeharu Nagai,et al.  Highlightable Ca 2 + Indicators for Live Cell Imaging , 2013 .

[65]  J. Sanes,et al.  Improved tools for the Brainbow toolbox. , 2013, Nature methods.

[66]  P. Schultz,et al.  Expanding the genetic code. , 2002, Chemical communications.