Convergence of natural adaptive least squares finite element methods
暂无分享,去创建一个
[1] Lei Tang,et al. Efficiency Based Adaptive Local Refinement for First-Order System Least-Squares Formulations , 2011, SIAM J. Sci. Comput..
[2] Carsten Carstensen,et al. Axioms of adaptivity , 2013, Comput. Math. Appl..
[3] Carsten Carstensen,et al. Error reduction and convergence for an adaptive mixed finite element method , 2006, Math. Comput..
[4] Thomas A. Manteuffel,et al. LOCAL ERROR ESTIMATES AND ADAPTIVE REFINEMENT FOR FIRST-ORDER SYSTEM LEAST SQUARES (FOSLS) , 1997 .
[5] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[6] Pavel B. Bochev,et al. Mathematical Foundations of Least-Squares Finite Element Methods , 2009 .
[7] Christian Kreuzer,et al. Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..
[8] Jan Brandts,et al. A note on least-squares mixed finite elements in relation to standard and mixed finite elements , 2006 .
[9] R. Hoppe,et al. A review of unified a posteriori finite element error control , 2012 .
[10] L. R. Scott,et al. Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .
[11] Susanne C. Brenner,et al. Two-level additive Schwarz preconditioners for nonconforming finite element methods , 1996, Math. Comput..
[12] Christoph Ortner,et al. Convergence of simple adaptive Galerkin schemes based on h − h/2 error estimators , 2010, Numerische Mathematik.
[13] Rob P. Stevenson,et al. Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..
[14] Carsten Carstensen,et al. Convergence and Optimality of Adaptive Least Squares Finite Element Methods , 2015, SIAM J. Numer. Anal..
[15] Gerhard Starke,et al. An Adaptive Least-Squares Mixed Finite Element Method for Elasto-Plasticity , 2007, SIAM J. Numer. Anal..
[16] D. Arnold,et al. Mixed and nonconforming finite element methods : implementation, postprocessing and error estimates , 1985 .
[17] Ronald A. DeVore,et al. Fast computation in adaptive tree approximation , 2004, Numerische Mathematik.
[18] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[19] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[20] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[21] R. Nochetto,et al. Theory of adaptive finite element methods: An introduction , 2009 .
[22] Wolfgang Dahmen,et al. Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.
[23] Carsten Carstensen,et al. Comparison Results of Finite Element Methods for the Poisson Model Problem , 2012, SIAM J. Numer. Anal..
[24] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[25] Carsten Carstensen,et al. Axioms of adaptivity for separate marking , 2016, 1606.02165.
[26] Carsten Carstensen,et al. An optimal adaptive mixed finite element method , 2011, Math. Comput..
[27] L. D. Marini. An Inexpensive Method for the Evaluation of the Solution of the Lowest Order Raviart–Thomas Mixed Method , 1985 .
[28] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .