Convective blueshifts in the solar atmosphere

Context. Convective motions in the solar atmosphere cause spectral lines to become asymmetric and shifted in wavelength. For photospheric lines, this differential Doppler shift varies from the solar disk center to the limb. Aims. Precise and comprehensive observations of the convective blueshift and its center-to-limb variation improve our understanding of the atmospheric hydrodynamics and ensuing line formation, and provide the basis to refine 3D models of the solar atmosphere. Methods. We performed systematical spectroscopic measurements of the convective blueshift of the quiet Sun with the Laser Absolute Reference Spectrograph (LARS) at the German Vacuum Tower Telescope. The spatial scanning of the solar disk covered 11 heliocentric positions each along four radial (meridional and equatorial) axes. The high-resolution spectra of 26 photospheric to chromospheric lines in the visible range were calibrated with a laser frequency comb to absolute wavelengths at the 1 m s−1 accuracy. Applying ephemeris and reference corrections, the bisector analysis provided line asymmetries and Doppler shifts with an uncertainty of only few m s−1. To allow for a comparison with other observations, we convolved the results to lower spectral resolutions. Results. All spectral line bisectors exhibit a systematic center-to-limb variation. Typically, a blueshifted “C”-shaped curve at disk center transforms into a less blueshifted “\”-shape toward the solar limb. The comparison of all lines reveals the systematic dependence of the convective blueshift on the line depth. The blueshift of the line minima describe a linear decrease with increasing line depths. The slope of the center-to-limb variation develops a reversal point at heliocentric positions between μ = 0.7 and 0.85, seen as the effect of horizontal granular flows in the mid photosphere. Line minima formed in the upper photosphere to chromosphere exhibit hardly any blueshift or even a slight redshift. Synthetic models yield considerable deviations from the observed center-to-limb variation. Conclusions. The obtained Doppler shifts of the quiet Sun can serve as an absolute reference for other observations, the relative calibration of Dopplergrams, and the necessary refinement of atmospheric models. Based on this, the development of high-precision models of stellar surface convection will advance the detection of (potentially habitable) exoplanets by radial velocity measurements.

[1]  Xavier Dumusque,et al.  Measuring precise radial velocities on individual spectral lines , 2018, Astronomy & Astrophysics.

[2]  T. Steinmetz,et al.  Convective blueshifts in the solar atmosphere-II. High-accuracy observations of the Fe I 6173.3 Å line and deviations of full-disk Dopplergrams , 2019 .

[3]  R. Haywood,et al.  Stellar Surface Magneto-convection as a Source of Astrophysical Noise. II. Center-to-limb Parameterization of Absorption Line Profiles and Comparison to Observations , 2018, The Astrophysical Journal.

[4]  Absolute velocity measurements in sunspot umbrae , 2018, Astronomy & Astrophysics.

[5]  F. Bauer,et al.  The influence of convective blueshift on radial velocities of F, G, and K stars , 2018 .

[6]  W. Schmidt,et al.  Convective blueshifts in the solar atmosphere, I. Absolute measurements with LARS of the spectral lines at 6302 {\AA} , 2017, 1712.07059.

[7]  W. Schmidt,et al.  LARS: An Absolute Reference Spectrograph for solar observations Upgrade from a prototype to a turn-key system , 2017, 1707.01573.

[8]  L. Rachmeler The Sun: An Introduction , 2017 .

[9]  W. Schmidt,et al.  Daniel K. Inouye Solar Telescope: High‐resolution observing of the dynamic Sun , 2016 .

[10]  A. Collier Cameron,et al.  The Sun as a planet-host star: proxies from SDO images for HARPS radial-velocity variations , 2016, 1601.05651.

[11]  S. Antiochos,et al.  ACHIEVING CONSISTENT DOPPLER MEASUREMENTS FROM SDO/HMI VECTOR FIELD INVERSIONS , 2015, 1511.06500.

[12]  Nicolas Buchschacher,et al.  HARPS-N OBSERVES THE SUN AS A STAR , 2015, 1511.02267.

[13]  J. Bailey Measuring the surface magnetic fields of magnetic stars with unresolved Zeeman splitting , 2014, 1407.7847.

[14]  M. Riva,et al.  ESPRESSO: The next European exoplanet hunter , 2014, 1401.5918.

[15]  K. Puschmann,et al.  GREGOR Fabry-Pérot interferometer and its companion the blue imaging solar spectrometer , 2013, 1302.7157.

[16]  Yukio Katsukawa,et al.  The Hinode Spectro-Polarimeter , 2013 .

[17]  R. Schlichenmaier,et al.  Correlations between sunspots and their moat flows , 2013, 1301.2434.

[18]  Antonio Manescau,et al.  Astronomical Spectrograph Calibration at the Exo-Earth Detection Limit , 2012 .

[19]  P. Scherrer,et al.  Line-of-Sight Observables Algorithms for the Helioseismic and Magnetic Imager (HMI) Instrument Tested with Interferometric Bidimensional Spectrometer (IBIS) Observations , 2012 .

[20]  C. J. Wolfson,et al.  Design and Ground Calibration of the Helioseismic and Magnetic Imager (HMI) Instrument on the Solar Dynamics Observatory (SDO) , 2012 .

[21]  Jesper Schou,et al.  Wavelength Dependence of the Helioseismic and Magnetic Imager (HMI) Instrument onboard the Solar Dynamics Observatory (SDO) , 2012 .

[22]  Alexandra Tritschler,et al.  The second ATST-EAST meeting : magnetic fields from the photosphere to the corona , 2012 .

[23]  G. Scharmer,et al.  Detection of Convective Downflows in a Sunspot Penumbra , 2011, Science.

[24]  S. Solanki,et al.  CONVECTIVE NATURE OF SUNSPOT PENUMBRAL FILAMENTS: DISCOVERY OF DOWNFLOWS IN THE DEEP PHOTOSPHERE , 2011, 1105.1877.

[25]  D. Kiselman,et al.  Solar velocity references from 3D HD photospheric models , 2011, 1101.2671.

[26]  Christophe Lovis,et al.  Planetary detection limits taking into account stellar noise - I. Observational strategies to reduce stellar oscillation and granulation effects , 2010, 1010.2616.

[27]  A. Álvarez-Herrero,et al.  The Sunrise Mission , 2010, 1009.2689.

[28]  J. C. del Toro Iniesta,et al.  The Imaging Magnetograph eXperiment (IMaX) for the Sunrise Balloon-Borne Solar Observatory , 2010, 1009.1095.

[29]  A.-M. Lagrange,et al.  Using the Sun to estimate Earth-like planets detection capabilities II. Impact of plages , 2010, 1001.1638.

[30]  K. Reardon,et al.  THE QUIET SOLAR ATMOSPHERE OBSERVED AND SIMULATED IN Na i D1 , 2009, 0912.2206.

[31]  Michael Wegner,et al.  Ground-based and Airborne Instrumentation for Astronomy III , 2010 .

[32]  Jan Swevers,et al.  Ground-based and airborne instrumentation for astronomy , 2010 .

[33]  F. Kneer,et al.  Acoustic waves in the solar atmosphere at high spatial resolution , 2009 .

[34]  R. Rutten,et al.  Explanation of the activity sensitivity of Mn I 5394.7 Å , 2008, 0811.3555.

[35]  T. Hänsch,et al.  Laser Frequency Combs for Astronomical Observations , 2008, Science.

[36]  The origin of the reversed granulation in the solar photosphere , 2006, astro-ph/0612464.

[37]  F. Cavallini IBIS: A New Post-Focus Instrument for Solar Imaging Spectroscopy , 2006 .

[38]  G. Scharmer Comments on the optimization of high resolution Fabry-Pérot filtergraphs , 2006 .

[39]  R. Schlichenmaier,et al.  Multi-line spectroscopy of dark-cored penumbral filaments , 2005 .

[40]  M. Asplund,et al.  New light on stellar abundance analyses: Departures from LTE and homogeneity. , 2005 .

[41]  D. C. Solana,et al.  Sensitivity of spectral lines to temperature, velocity, and magnetic field , 2005 .

[42]  F. Kneer,et al.  Polarimetry in Sunspot Penumbrae at High Spatial Resolution , 2005 .

[43]  R. Schlichenmaier,et al.  Two-dimensional spectroscopy of a sunspot - I. Properties of the penumbral fine structure , 2004 .

[44]  R. Schlichenmaier,et al.  Two-dimensional spectroscopy of a sunspot II. Penumbral line asymmetries , 2004 .

[45]  Jean-Luis Lizon,et al.  Setting New Standards with HARPS , 2003 .

[46]  Investigation of temperature and velocity fluctuations through the solar photosphere with the Na I D lines , 2001 .

[47]  P. Hauschildt,et al.  Solar Mn I 5432/5395 A line formation explained , 2001 .

[48]  R. Muller,et al.  The Solar Granulation , 1999 .

[49]  D. F. Gray,et al.  Monitoring the Solar Temperature: Empirical Calibration of the Temperature Sensitivity of C I λ5380 , 1997 .

[50]  C. H. Acton,et al.  Ancillary data services of NASA's Navigation and Ancillary Information Facility , 1996 .

[51]  S. Johansson,et al.  A New Multiplet Table for Fe , 1994, astro-ph/9404049.

[52]  B. Lites The polarization properties of Feii 614.9 nm , 1993 .

[53]  Herschel B. Snodgrass,et al.  Rotation of Doppler Features in the Solar Photosphere , 1990 .

[54]  H. Balthasar On the contribution of horizontal granular motions to observed limb-effect curves , 1985 .

[55]  B. N. Andersen,et al.  Limb effect of solar absorption lines , 1984 .

[56]  H. Balthasar Asymmetries and wavelengths of solar spectral lines and the solar rotation determined from Fourier-transform spectra , 1984 .

[57]  Dainis Dravins,et al.  Photospheric Spectrum Line Asymmetries and Wavelength Shifts , 1982 .

[58]  P. Brandt,et al.  On the centre-to-limb variation and latitude dependence of the asymmetry and wavelength shift of the solar line λ 5576 , 1982 .

[59]  J. Beckers,et al.  Some comments on the limb shift of solar lines , 1978 .

[60]  J. Beckers Material motions in sunspot umbrae. , 1977 .

[61]  P. Ibbetson,et al.  The Solar Limb Effect: Observations of Line Contours and Line Shifts , 1976 .

[62]  S. P. Worden,et al.  Heights of formation of non-magnetic solar lines suitable for velocity studies , 1975 .

[63]  T. Margrave The solar manganese abundance , 1972 .

[64]  I. Appenzeller,et al.  Center-to-limb variations of the intensity and the wavelength of several Fraunhofer lines along the sun's polar and equatorial diameter. , 1967 .

[65]  R. Loughhead,et al.  The Solar Granulation , 1967 .

[66]  J. Halm Über eine bisher unbekannte Verschiebung der Fraunhoferschen Linien des Sonnenspektrums , 1906 .

[67]  D. Todd,et al.  The Sun , 1870, Nature.