A Clique Tree Algorithm for Partitioning A Chordal Graph into Transitive Subgraphs
暂无分享,去创建一个
[1] Fernando L. Alvarado,et al. A Fast Reordering Algorithm for Parallel Sparse Triangular Solution , 1992, SIAM J. Sci. Comput..
[2] Joseph W. H. Liu,et al. Reordering sparse matrices for parallel elimination , 1989, Parallel Comput..
[3] Barry W. Peyton,et al. On Finding Minimum-Diameter Clique Trees , 1994, Nord. J. Comput..
[4] B. Peyton,et al. An Introduction to Chordal Graphs and Clique Trees , 1993 .
[5] Zsolt Tuza,et al. Algorithmic Aspects of Neighborhood Numbers , 1993, SIAM J. Discret. Math..
[6] B. Peyton. Some Applications of Clique Trees to the Solution of Sparse Linear Systems , 1986 .
[7] B. Peyton,et al. Partitioning a Chordal Graph into Transitive Subgraphs for Parallel Sparse Triangular Solution , 1993 .
[8] Michael E. Lundquist. Zero Patterns, Chordal Graphs and Matrix Completions , 1990 .
[9] Nicholas J. Higham,et al. Stability of the Partitioned Inverse Method for Parallel Solution of Sparse Triangular Systems , 1994, SIAM J. Sci. Comput..
[10] M. Golumbic. Algorithmic graph theory and perfect graphs , 1980 .
[11] Philip A. Bernstein,et al. Power of Natural Semijoins , 1981, SIAM J. Comput..
[12] Barry W. Peyton,et al. Partitioning a chordal graph into transitive subgraphs for parallel sparse triangular solution , 1993 .
[13] R. Schreiber,et al. Highly Parallel Sparse Triangular Solution , 1994 .
[14] J. G. Lewis,et al. A fast algorithm for reordering sparse matrices for parallel factorization , 1989 .
[15] Richard C. T. Lee,et al. Counting Clique Trees and Computing Perfect Elimination Schemes in Parallel , 1989, Inf. Process. Lett..
[16] Fernando L. Alvarado,et al. Optimal Parallel Solution of Sparse Triangular Systems , 1993, SIAM J. Sci. Comput..
[17] M. Golummc. Algorithmic graph theory and perfect graphs , 1980 .
[18] P. Duchet. Classical Perfect Graphs: An introduction with emphasis on triangulated and interval graphs , 1984 .
[19] Martin Charles Golumbic,et al. Trivially perfect graphs , 1978, Discret. Math..