Estimation of the Kolmogorov constant (C0) for the Lagrangian structure function, using a second‐order Lagrangian model of grid turbulence

We review Sawford’s [Phys. Fluids A 3, 1577 (1991)] second‐order Lagrangian stochastic model for particle trajectories in low Reynolds number turbulence, showing that it satisfies a well‐mixed constraint for the (hypothetical) case of stationary, homogeneous, isotropic turbulence in which the joint probability density function for the fixed‐point velocity and acceleration is Gaussian. We then extend the model to decaying homogeneous turbulence and, by optimizing model agreement with the measured spread of tracers in grid turbulence, estimate that Kolmogorov’s universal constant (C0) for the Lagrangian velocity structure function has the value of 3.0±0.5.

[1]  E. Siggia,et al.  Skewed, exponential pressure distributions from Gaussian velocities , 1993 .

[2]  D. Thomson,et al.  Calculation of particle trajectories in the presence of a gradient in turbulent-velocity variance , 1983 .

[3]  D. Thomson Criteria for the selection of stochastic models of particle trajectories in turbulent flows , 1987, Journal of Fluid Mechanics.

[4]  Brian L. Sawford,et al.  Reynolds number effects in Lagrangian stochastic models of turbulent dispersion , 1991 .

[5]  S. Pope Lagrangian PDF Methods for Turbulent Flows , 1994 .

[6]  A. Pumir A numerical study of pressure fluctuations in three‐dimensional, incompressible, homogeneous, isotropic turbulence , 1994 .

[7]  H. C. Rodean The universal constant for the Lagrangian structure function , 1991 .

[8]  A. Townsend The Structure of Turbulent Shear Flow , 1975 .

[9]  S. Pope,et al.  Lagrangian statistics from direct numerical simulations of isotropic turbulence , 1989, Journal of Fluid Mechanics.

[10]  Probability density functions for velocity in the convective boundary layer, and implied trajectory models , 1994 .

[11]  P. A. Durbin,et al.  Stochastic differential equations and turbulent dispersion , 1983 .

[12]  Samuel Hassid Turbulent schmidt number for diffusion models in the neutral boundary layer , 1983 .

[13]  John D. Reid Markov Chain Simulations of Vertical Dispersion in the Neutral Surface Layer for Surface and Elevated Releases , 1979 .

[14]  Rex Britter,et al.  A random walk model for dispersion in inhomogeneous turbulence in a convective boundary layer , 1989 .

[15]  G. Batchelor,et al.  The theory of homogeneous turbulence , 1954 .

[16]  G. W. Thurtell,et al.  Numerical simulation of particle trajectories in inhomogeneous turbulence, III: Comparison of predictions with experimental data for the atmospheric surface layer , 1981 .

[17]  E. F. Bradley,et al.  An alternative analysis of flux-gradient relationships at the 1976 ITCE , 1982 .

[18]  M. Barad,et al.  PROJECT PRAIRIE GRASS, A FIELD PROGRAM IN DIFFUSION. VOLUME II , 1958 .

[19]  John D. Wilson An approximate analytical solution to the diffusion equation for short-range dispersion from a continuous ground-level source , 1982 .

[20]  S. Panchev Random Functions and Turbulence , 1972 .

[21]  Steven R. Hanna,et al.  Lagrangian and Eulerian Time-Scale Relations in the Daytime Boundary Layer , 1981 .

[22]  P. Durbin Comments on papers by Wilson et al. (1981) and Legg and Raupach (1982) , 1984 .

[23]  U. Högström,et al.  Von Kármán's Constant in Atmospheric Boundary Layer Flow: Reevaluated , 1985 .

[24]  H. Tennekes The exponential Lagrangian correlation function and turbulent diffusion in the inertial subrange , 1979 .