Estimation of the Kolmogorov constant (C0) for the Lagrangian structure function, using a second‐order Lagrangian model of grid turbulence
暂无分享,去创建一个
Shuming Du | D. Wilson | John D. Wilson | D. J. Wilson | Brian L. Sawford | B. Sawford | S. Du | John D. Wilson
[1] E. Siggia,et al. Skewed, exponential pressure distributions from Gaussian velocities , 1993 .
[2] D. Thomson,et al. Calculation of particle trajectories in the presence of a gradient in turbulent-velocity variance , 1983 .
[3] D. Thomson. Criteria for the selection of stochastic models of particle trajectories in turbulent flows , 1987, Journal of Fluid Mechanics.
[4] Brian L. Sawford,et al. Reynolds number effects in Lagrangian stochastic models of turbulent dispersion , 1991 .
[5] S. Pope. Lagrangian PDF Methods for Turbulent Flows , 1994 .
[6] A. Pumir. A numerical study of pressure fluctuations in three‐dimensional, incompressible, homogeneous, isotropic turbulence , 1994 .
[7] H. C. Rodean. The universal constant for the Lagrangian structure function , 1991 .
[8] A. Townsend. The Structure of Turbulent Shear Flow , 1975 .
[9] S. Pope,et al. Lagrangian statistics from direct numerical simulations of isotropic turbulence , 1989, Journal of Fluid Mechanics.
[10] Probability density functions for velocity in the convective boundary layer, and implied trajectory models , 1994 .
[11] P. A. Durbin,et al. Stochastic differential equations and turbulent dispersion , 1983 .
[12] Samuel Hassid. Turbulent schmidt number for diffusion models in the neutral boundary layer , 1983 .
[13] John D. Reid. Markov Chain Simulations of Vertical Dispersion in the Neutral Surface Layer for Surface and Elevated Releases , 1979 .
[14] Rex Britter,et al. A random walk model for dispersion in inhomogeneous turbulence in a convective boundary layer , 1989 .
[15] G. Batchelor,et al. The theory of homogeneous turbulence , 1954 .
[16] G. W. Thurtell,et al. Numerical simulation of particle trajectories in inhomogeneous turbulence, III: Comparison of predictions with experimental data for the atmospheric surface layer , 1981 .
[17] E. F. Bradley,et al. An alternative analysis of flux-gradient relationships at the 1976 ITCE , 1982 .
[18] M. Barad,et al. PROJECT PRAIRIE GRASS, A FIELD PROGRAM IN DIFFUSION. VOLUME II , 1958 .
[19] John D. Wilson. An approximate analytical solution to the diffusion equation for short-range dispersion from a continuous ground-level source , 1982 .
[20] S. Panchev. Random Functions and Turbulence , 1972 .
[21] Steven R. Hanna,et al. Lagrangian and Eulerian Time-Scale Relations in the Daytime Boundary Layer , 1981 .
[22] P. Durbin. Comments on papers by Wilson et al. (1981) and Legg and Raupach (1982) , 1984 .
[23] U. Högström,et al. Von Kármán's Constant in Atmospheric Boundary Layer Flow: Reevaluated , 1985 .
[24] H. Tennekes. The exponential Lagrangian correlation function and turbulent diffusion in the inertial subrange , 1979 .