S-Estimators for Functional Principal Component Analysis
暂无分享,去创建一个
[1] J. Osborn. Spectral approximation for compact operators , 1975 .
[2] N. Campbell. Robust Procedures in Multivariate Analysis I: Robust Covariance Estimation , 1980 .
[3] S. J. Devlin,et al. Robust Estimation of Dispersion Matrices and Principal Components , 1981 .
[4] Guoying Li,et al. Projection-Pursuit Approach to Robust Dispersion Matrices and Principal Components: Primary Theory and Monte Carlo , 1985 .
[5] G. Boente. Asymptotic theory for robust principal components , 1987 .
[6] Gérard Antille,et al. Stability of robust and non-robust principal components analysis , 1990 .
[7] P. Rousseeuw,et al. Unmasking Multivariate Outliers and Leverage Points , 1990 .
[8] Leonard M. Adleman,et al. Proof of proposition 3 , 1992 .
[9] Ming-Deh A. Huang,et al. Proof of proposition 2 , 1992 .
[10] S. Sillman. Tropospheric Ozone: The Debate over Control Strategies , 1993 .
[11] W. Heiser,et al. Resistant lower rank approximation of matrices by iterative majorization , 1994 .
[12] S. Lohr. Statistics (2nd Ed.) , 1994 .
[13] Christophe Croux,et al. A Fast Algorithm for Robust Principal Components Based on Projection Pursuit , 1996 .
[14] Ursula Gather,et al. The Masking Breakdown Point of Multivariate Outlier Identification Rules , 1999 .
[15] Katrien van Driessen,et al. A Fast Algorithm for the Minimum Covariance Determinant Estimator , 1999, Technometrics.
[16] D. G. Simpson,et al. Robust principal component analysis for functional data , 2007 .
[17] C. Croux,et al. Principal Component Analysis Based on Robust Estimators of the Covariance or Correlation Matrix: Influence Functions and Efficiencies , 2000 .
[18] Ursula Gather,et al. The largest nonindentifiable outlier: a comparison of multivariate simultaneous outlier identification rules , 2001 .
[19] Michael J. Black,et al. Robust Principal Component Analysis for Computer Vision , 2001, ICCV.
[20] M. Hubert,et al. A fast method for robust principal components with applications to chemometrics , 2002 .
[21] Peter Filzmoser,et al. Regressions , 2019, Energy Transfers by Convection.
[22] Hengjian Cui,et al. Asymptotic distributions of principal components based on robust dispersions , 2003 .
[23] Li Liu,et al. Robust singular value decomposition analysis of microarray data , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[24] Greet Pison,et al. Diagnostic Plots for Robust Multivariate Methods , 2004 .
[25] David M. Rocke,et al. The Distribution of Robust Distances , 2005 .
[26] Mia Hubert,et al. ROBPCA: A New Approach to Robust Principal Component Analysis , 2005, Technometrics.
[27] Ricardo A. Maronna,et al. Principal Components and Orthogonal Regression Based on Robust Scales , 2005, Technometrics.
[28] Christophe Croux,et al. High breakdown estimators for principal components: the projection-pursuit approach revisited , 2005 .
[29] V. Yohai,et al. Robust Statistics: Theory and Methods , 2006 .
[30] V. Yohai,et al. A Fast Algorithm for S-Regression Estimates , 2006 .
[31] Wenceslao González-Manteiga,et al. A functional analysis of NOx levels: location and scale estimation and outlier detection , 2007, Comput. Stat..
[32] Rob J. Hyndman,et al. Robust forecasting of mortality and fertility rates: A functional data approach , 2007, Comput. Stat. Data Anal..
[33] Ricardo A. Maronna,et al. Robust lower-rank approximation of data matrices with element-wise contamination , 2007 .
[34] Bruce Ainslie,et al. Spatiotemporal Trends in Episodic Ozone Pollution in the Lower Fraser Valley, British Columbia, in Relation to Mesoscale Atmospheric Circulation Patterns and Emissions , 2007 .
[35] Mia Hubert,et al. An adjusted boxplot for skewed distributions , 2008, Comput. Stat. Data Anal..
[36] M. Febrero,et al. Outlier detection in functional data by depth measures, with application to identify abnormal NOx levels , 2008 .
[37] Victor J. Yohai,et al. Robust Low-Rank Approximation of Data Matrices With Elementwise Contamination , 2008, Technometrics.
[38] D. Gervini. Robust functional estimation using the median and spherical principal components , 2008 .
[39] G. Boente,et al. Principal points and elliptical distributions from the multivariate setting to the functional case , 2009, 2006.04188.
[40] Rob J Hyndman,et al. Rainbow Plots, Bagplots, and Boxplots for Functional Data , 2010 .
[41] J. Tropp,et al. Two proposals for robust PCA using semidefinite programming , 2010, 1012.1086.
[42] Kuldeep Kumar,et al. Robust Statistics, 2nd edn , 2011 .
[43] David E. Tyler,et al. Robust functional principal components: A projection-pursuit approach , 2011, 1203.2027.
[44] Kuldeep Kumar. Robust Statistics, 2nd edition by P.J. Huber & E.M. Ronchetti [book review] , 2011 .
[45] Yi Ma,et al. Robust principal component analysis? , 2009, JACM.
[46] Pablo A. Parrilo,et al. Rank-Sparsity Incoherence for Matrix Decomposition , 2009, SIAM J. Optim..
[47] Constantine Caramanis,et al. Robust PCA via Outlier Pursuit , 2010, IEEE Transactions on Information Theory.
[48] Hyejin Shin,et al. Functional outlier detection with robust functional principal component analysis , 2011, Computational Statistics.
[49] Joel A. Tropp,et al. Robust computation of linear models, or How to find a needle in a haystack , 2012, ArXiv.
[50] David E. Tyler,et al. A characterization of elliptical distributions and some optimality properties of principal components for functional data , 2014, J. Multivar. Anal..
[51] Gilad Lerman,et al. A novel M-estimator for robust PCA , 2011, J. Mach. Learn. Res..