Electron microscopy of the collagen fibril

Collagen is identified by those properties that stem from the predominantly triple-chain helical structure of its molecules. A prerequisite for the formation of this triple helix is a Gly-X-Y repeating tripeptide unit in the amino acid sequence of the three chains, where X and Y can be any amino acids but are often the imino acids proline and hydroxyproline. This sequence, with glycine in every third position and with an unusual abundance of hydroxyproline, forms the basis for the chemical identification of collagen (for review, see 1). An unambiguous physical identification is provided by X-ray diffraction; the helix parameters established by high-angle X-ray scattering are unique to collagen (2).

[1]  A. Ruggeri,et al.  Collagen fibrils with straight and helicoidal microfibrils: a freeze-fracture and thin-section study. , 1979, Journal of ultrastructure research.

[2]  K. Kühn,et al.  Eigenschaften des Tropokollagen-Moleküls und deren Bedeutung für die Fibrillenbildung , 1961 .

[3]  A. Breathnach,et al.  Freeze-fracture replication and surface sublimation of frozen collagen fibrils. , 1977, Journal of cell science.

[4]  S. Ghosh,et al.  Oblique banding pattern in collagen fibrils reconstituted in vitro after trypsin treatment. , 1975, Biochimica et biophysica acta.

[5]  J. Squire,et al.  Direct observation of a transverse periodicity in collagen fibrils , 1980, Nature.

[6]  D. Sasaki,et al.  Intracellular processing of procollagen induced by the action of colchicine. , 1980, Journal of anatomy.

[7]  C. Hall Introduction to Electron Microscopy , 1954 .

[8]  F H Silver,et al.  Type I collagen in solution. Structure and properties of fibril fragments. , 1980, The Journal of biological chemistry.

[9]  H. Green,et al.  AN ANALYSIS OF COLLAGEN SECRETION BY ESTABLISHED MOUSE FIBROBLAST LINES , 1964, The Journal of cell biology.

[10]  R. Timpl,et al.  Immunohistologic analysis of fetal and dermatosparactic calf and sheep skin with antisera to procollagen and collagen type I. , 1978, Laboratory investigation; a journal of technical methods and pathology.

[11]  C. P. Leblond,et al.  Immunohistochemical localization of procollagens. III. Type I procollagen antigenicity in osteoblasts and prebone (osteoid). , 1981, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[12]  J. A. Chapman,et al.  An Analysis of Fibrous Long Spacing Forms of Collagen , 1972 .

[13]  W. Comper,et al.  The mechanism of nucleation for in vitro collagen fibril formation , 1977, Biopolymers.

[14]  K. Kühn,et al.  The primary structure of collagen. , 1976, International review of connective tissue research.

[15]  J. W. SMITH,et al.  Molecular Pattern in Native Collagen , 1968, Nature.

[16]  J. A. Chapman,et al.  The staining pattern of collagen fibrils. I. An analysis of electron micrographs. , 1974, Connective tissue research.

[17]  D. Hulmes,et al.  Molecular packing in collagen , 1981, Nature.

[18]  S. Leibovich,et al.  Electron microscope studies of the effects of endo- and exopeptidase digestion on tropocollagen. A novel concept of the role of terminal regions in fibrillogenesis. , 1970, Biochimica et biophysica acta.

[19]  A. Bailey,et al.  Electron microscope studies on the structure of collagen fibrils by negative staining , 1962, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[20]  B. Olsen Electron microscope studies on collagen , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[21]  G. N. Ramachandran,et al.  Biochemistry of collagen , 1976 .

[22]  W. Traub,et al.  The limiting collagen microfibril. The minimum structure demonstrating native axial periodicity. , 1979, Biochimica et biophysica acta.

[23]  David W.L. Hukins,et al.  Collagen Fibrils as Examples of Smectic A Biological Fibres , 1977 .

[24]  J. A. Chapman,et al.  The staining pattern of collagen fibrils. II. A comparison with patterns computer-generated from the amino acid sequence. , 1974, Connective tissue research.

[25]  E. Eikenberry,et al.  [5] Characterization of fibrous forms of collagen , 1982 .

[26]  R. Bruns,et al.  High‐resolution analysis of the modified quarter‐stagger model of the collagen fibril , 1974, Biopolymers.

[27]  A. Miller,et al.  Crystalline three‐dimensional packing is a general characteristic of type I collagen fibrils , 1980, FEBS letters.

[28]  D. Parry,et al.  A D-periodic narrow filament in collagen , 1974, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[29]  H. Bensusan,et al.  Fiber Formation from Solutions of Collagen. II. The Role of Tyrosyl Residues1,2 , 1960 .

[30]  D. Rayns,et al.  Collagen from frozen fractured glycerinated beef heart. , 1974, Journal of ultrastructure research.

[31]  D. Hulmes,et al.  Quasi-hexagonal molecular packing in collagen fibrils , 1979, Nature.

[32]  K. Kivirikko,et al.  [Biosynthesis of collagen and its disorders]. , 1979, Duodecim; laaketieteellinen aikakauskirja.

[33]  E. Eikenberry,et al.  X-ray diffraction of reconstituted collagen fibers. , 1980, Journal of molecular biology.

[34]  D. Prockop,et al.  Formation of collagen fibrils in vitro by cleavage of procollagen with procollagen proteinases. , 1982, The Journal of biological chemistry.

[35]  J. A. Chapman,et al.  Polymorphism in Collagen Fibrils precipitated at Low pH , 1968, Nature.

[36]  Y. Nonomura,et al.  Quantitative analysis of the mechanism of negative staining with native collagen fibrils and polar tropomyosin paracrystals. , 1979, Journal of biochemistry.

[37]  K. Piez,et al.  Collagen fibril formation in vitro. A quasielastic light-scattering study of early stages. , 1980, The Journal of biological chemistry.

[38]  K. Kühn Segment-long-spacing crystallites, a powerful tool in collagen research. , 1982, Collagen and related research.

[39]  Andrew D. Miller,et al.  Calculated X-ray diffraction pattern from a quasi-hexagonal model for the molecular arrangement in collagen , 1981 .

[40]  J. A. Chapman,et al.  A study of the growth of normal and iodinated collagen fibrils in vitro using electron microscope autoradiography , 1977, Biopolymers.

[41]  R. Timpl,et al.  Ultrastructural identification of extension aminopropeptides of type I and III collagens in human skin. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[42]  W. Fuller Structural aspects of recognition and assembly in biological macromolecules , 1982 .

[43]  C. P. Leblond,et al.  SYNTHESIS, MIGRATION, AND RELEASE OF PRECURSOR COLLAGEN BY ODONTOBLASTS AS VISUALIZED BY RADIOAUTOGRAPHY AFTER [3H]PROLINE ADMINISTRATION , 1974, The Journal of cell biology.

[44]  G. C. Wood,et al.  The formation of fibrils from collagen solutions. 1. The effect of experimental conditions: kinetic and electron-microscope studies. , 1960, The Biochemical journal.

[45]  K. Piez,et al.  Collagen fibril formation. Evidence for a multistep process. , 1979, The Journal of biological chemistry.

[46]  B. Trus,et al.  Compressed microfibril models of the native collagen fibril , 1980, Nature.

[47]  R. Bruns,et al.  Band pattern of the segment-long-spacing form of collagen. Its use in the analysis of primary structure. , 1973, Biochemistry.

[48]  I Nakanishi,et al.  The effect of collagenase on the formation of fibrous long spacing collagen aggregates. , 1980, Laboratory investigation; a journal of technical methods and pathology.

[49]  M. Cho,et al.  Sequential events in the formation of collagen secretion granules with special reference to the development of segment‐long‐spacing‐like aggregates , 1981, The Anatomical record.

[50]  J. Woodhead-Galloway,et al.  Modern theories of liquids and the diffuse equatorial X‐ray scattering from collagen , 1976 .

[51]  B. Trus,et al.  A new model for packing of type-I collagen molecules in the native fibril , 1981, Bioscience reports.

[52]  Kuy Pérez-Tamayo,et al.  THE OCCURRENCE AND SIGNIFICANCE OF SLS CRYSTALLITES IN VIVO , 1972 .

[53]  G. C. Wood The precipitation of collagen fibers from solution. , 1964, International review of connective tissue research.

[54]  D. Hulmes,et al.  Interpretation of the meridional X-ray diffraction pattern from collagen fibres in terms of the known amino acid sequence. , 1977, Journal of molecular biology.

[55]  K. Piez,et al.  Collagen fibril formation in vitro. The role of the nonhelical terminal regions. , 1979, The Journal of biological chemistry.

[56]  D. Hukins,et al.  Collagen polymorphism: its origins in the amino acid sequence. , 1975, Journal of molecular biology.

[57]  F. Silver Type I collagen fibrillogenesis in vitro. Additional evidence for the assembly mechanism. , 1981, The Journal of biological chemistry.

[58]  E. Atkins,et al.  Chemical cross-linking restrictions on models for the molecular organization of the collagen fibre , 1980, Nature.

[59]  R. Trelstad,et al.  Collagen fibrillogenesis: intermediate aggregates and suprafibrillar order. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[60]  K. Piez,et al.  Collagen fibril formation. Optimal in vitro conditions and preliminary kinetic results. , 1978, The Journal of biological chemistry.

[61]  A. Ruggeri,et al.  Ultrastructure of the Connective Tissue Matrix , 1984, Electron Microscopy in Biology and Medicine.

[62]  D. A. Hall The Methodology of connective tissue research , 1976 .

[63]  J. A. Chapman,et al.  Diameters of collagen fibrils grown in vitro. , 1973, Nature: New biology.

[64]  R. H. Smith,et al.  Studies on the biosynthesis of collagen. I. The growth of fowl osteoblasts and the formation of collagen in tissue culture. , 1957 .

[65]  D. Torchia,et al.  Investigation of labeled amino acid side-chain motion in collagen using 13C nuclear magnetic resonance. , 1980, Journal of molecular biology.

[66]  M. Keech The formation of fibrils from collagen solutions. IV. Effect of mucopolysaccharides and nucleic acids: an electron microscope study. , 1961 .

[67]  Robert T. Brown Ionospheric Effects of Cosmic γ-ray Bursts , 1973, Nature.

[68]  M. Brennan,et al.  Role of aldehydes in collagen fibrillogenesis in vitro , 1980, Biopolymers.

[69]  W. Comper,et al.  Characterization of nuclei in in vitro collagen fibril formation , 1977, Biopolymers.

[70]  J. A. Chapman,et al.  The C‐terminal extrahelical peptide of type I collagen and its role in fibrillogenesis in vitro , 1982, Biopolymers.

[71]  W. Traub,et al.  4 – The Chemistry and Biology of Collagen , 1979 .

[72]  D. Parry,et al.  Structure and packing of microfibrils in collagen. , 1973, Journal of molecular biology.

[73]  D. Helseth,et al.  Role of the amino‐terminal extrahelical region of type I collagen in directing the 4D overlap in fibrillogenesis , 1979 .

[74]  J. A. Chapman,et al.  A study of positive staining for electron microscopy using collagen as a model system—II. Staining by uranyl ions , 1982 .

[75]  F. O. Schmitt,et al.  THE CHARGE PROFILE OF THE TROPOCOLLAGEN MACROMOLECULE AND THE PACKING ARRANGEMENT IN NATIVE-TYPE COLLAGEN FIBRILS. , 1960, Proceedings of the National Academy of Sciences of the United States of America.

[76]  G. C. Wood The formation of fibrils from collagen solutions. 2. A mechanism of collagen-fibril formation. , 1960, The Biochemical journal.

[77]  J. Randall,et al.  Structural Units in Collagen Fibrils , 1954, Nature.

[78]  J. A. Chapman,et al.  The staining pattern of collagen fibrils. Improved correlation with sequence data. , 1979, Journal of Biological Chemistry.

[79]  R. Bruns,et al.  On the state of aggregation of newly secreted procollagen. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[80]  A. Veis,et al.  A Limiting Microfibril Model for the Three-dimensional Arrangement within Collagen Fibres , 1967, Nature.

[81]  John C. Thomas,et al.  Dynamic light scattering from collagen solutions. II. Photon correlation study of the depolarized light , 1979, Biopolymers.

[82]  J. A. Chapman,et al.  THE PRECIPITATION OF SEGMENTED-LONG-SPACING COLLAGEN BY INORGANIC TRIPHOSPHATE AND PERDISULPHATE IONS , 1972 .

[83]  D. Hulmes,et al.  Electron microscopy shows periodic structure in collagen fibril cross sections. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[84]  R. Bruns,et al.  Procollagen segment-long-spacing crystallites: their role in collagen fibrillogenesis. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[85]  D. Parry,et al.  Growth and development of collagen fibrils in connective tissue , 1984 .

[86]  E. Eikenberry,et al.  An unusual collagen periodicity in skin. , 1980, Biochimica et biophysica acta.

[87]  D. Helseth,et al.  Collagen self-assembly in vitro. Differentiating specific telopeptide-dependent interactions using selective enzyme modification and the addition of free amino telopeptide. , 1981, The Journal of biological chemistry.

[88]  J. Scott,et al.  Dermatan sulphate-rich proteoglycan associates with rat tail-tendon collagen at the d band in the gap region. , 1981, The Biochemical journal.

[89]  R. Fraser,et al.  Unit cell and molecular connectivity in tendon collagen , 1981 .

[90]  R. Bruns,et al.  Cartilage Collagen: A Staggered Substructure in Reconstituted Fibrils , 1973, Science.

[91]  J. Weiss,et al.  Enzymic degradation of collagen. , 1976, International review of connective tissue research.

[92]  D. Baird,et al.  Liquid crystalline order in polymers , 1978 .

[93]  D. Hukins,et al.  Low angle X-ray diffraction studies on stained rat tail tendons. , 1978, Biochimica et biophysica acta.

[94]  D A Parry,et al.  Analysis of the primary structure of collagen for the origins of molecular packing. , 1973, Journal of molecular biology.

[95]  J. A. Chapman,et al.  Axial mass distributions of collagen fibrils grown in vitro: results for the end regions of early fibrils. , 1979, Biochemical and biophysical research communications.

[96]  P. Unwin,et al.  Beef liver catalase structure: interpretation of electron micrographs. , 1975, Journal of molecular biology.

[97]  J. Petruska,et al.  Recent studies with the electron microscope on ordered aggregates of the tropocollagen macromolecule , 1963 .

[98]  J. A. Chapman,et al.  A study of positive staining for electron microscopy using collagen as a model system—I. Staining by phosphotungstate and tungstate ions , 1982 .

[99]  R. Stinson,et al.  Skin collagen has an unusual d-spacing. , 1980, Biochimica et biophysica acta.