Decomposition Width of Matroids

Hlineny [P. Hlineny, Branch-width, parse trees, and monadic second-order logic for matroids, J. Combin. Theory Ser. B 96 (2006), 325-351] showed that every matroid property expressible in the monadic second-order logic can be decided in linear time for matroids with bounded branch-width that are represented over finite fields. To be able to extend these algorithmic results to matroids not representable over finite fields, we introduce a new width parameter for matroids, the decomposition width, and show that every matroid property expressible in the monadic second-order logic can be computed in linear time for matroids given by a decomposition with bounded width. We also relate the decomposition width to matroid branch-width and discuss implications of our results with respect to known algorithms.

[1]  J. Oxley Matroid Theory (Oxford Graduate Texts in Mathematics) , 2006 .

[2]  Hans L. Bodlaender A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC '93.

[3]  Petr Hlinený,et al.  Finding Branch-Decompositions and Rank-Decompositions , 2007, SIAM J. Comput..

[4]  Petr Hliněný,et al.  Matroid tree-width , 2006 .

[5]  Paul D. Seymour,et al.  Approximating clique-width and branch-width , 2006, J. Comb. Theory, Ser. B.

[6]  Daniel Král,et al.  Computing Representations of Matroids of Bounded Branch-Width , 2007, STACS.

[7]  Bert Gerards,et al.  On Rota's conjecture and excluded minors containing large projective geometries , 2006, J. Comb. Theory, Ser. B.

[8]  Paul D. Seymour,et al.  Recognizing graphic matroids , 1981 .

[9]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[10]  Bruno Courcelle,et al.  The Expression of Graph Properties and Graph Transformations in Monadic Second-Order Logic , 1997, Handbook of Graph Grammars.

[11]  Bert Gerards,et al.  Branch-Width and Well-Quasi-Ordering in Matroids and Graphs , 2002, J. Comb. Theory, Ser. B.

[12]  Bert Gerards,et al.  Excluding a planar graph from GF(q)-representable matroids , 2007, J. Comb. Theory, Ser. B.

[13]  Bert Gerards,et al.  Tangles, tree-decompositions and grids in matroids , 2009, J. Comb. Theory, Ser. B.

[14]  Paul D. Seymour,et al.  Testing branch-width , 2007, J. Comb. Theory, Ser. B.

[15]  Stefan Arnborg,et al.  Problems Easy for Tree-Decomposable Graphs (Extended Abstract) , 1988, ICALP.

[16]  Hans L. Bodlaender,et al.  Dynamic Programming on Graphs with Bounded Treewidth , 1988, ICALP.

[17]  Petr Hlinený,et al.  A Parametrized Algorithm for Matroid Branch-Width , 2005, SIAM J. Comput..

[18]  Petr Hlinený Branch-width, parse trees, and monadic second-order logic for matroids , 2006, J. Comb. Theory, Ser. B.

[19]  Petr Hlinený,et al.  On Matroid Representability and Minor Problems , 2006, MFCS.

[20]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[21]  Petr Hlinený,et al.  The Tutte Polynomial for Matroids of Bounded Branch-Width , 2006, Combinatorics, Probability and Computing.

[22]  Detlef Seese,et al.  Easy Problems for Tree-Decomposable Graphs , 1991, J. Algorithms.

[23]  Geoff Whittle,et al.  Addendum to matroid tree-width , 2009, Eur. J. Comb..

[24]  Petr Hlinený,et al.  On Matroid Properties Definable in the MSO Logic , 2003, MFCS.

[25]  Detlef Seese,et al.  Problems Easy for Tree-Decomposable Graphs (Extended Abstract) , 1988, ICALP.

[26]  Petr Hliněný,et al.  Finding branch-decomposition and rank-decomposition , 2008 .

[27]  Petr Hlinený,et al.  Branch-width, parse trees, and monadic second-order logic for matroids , 2003, J. Comb. Theory, Ser. B.