Decomposition Width of Matroids
暂无分享,去创建一个
[1] J. Oxley. Matroid Theory (Oxford Graduate Texts in Mathematics) , 2006 .
[2] Hans L. Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC '93.
[3] Petr Hlinený,et al. Finding Branch-Decompositions and Rank-Decompositions , 2007, SIAM J. Comput..
[4] Petr Hliněný,et al. Matroid tree-width , 2006 .
[5] Paul D. Seymour,et al. Approximating clique-width and branch-width , 2006, J. Comb. Theory, Ser. B.
[6] Daniel Král,et al. Computing Representations of Matroids of Bounded Branch-Width , 2007, STACS.
[7] Bert Gerards,et al. On Rota's conjecture and excluded minors containing large projective geometries , 2006, J. Comb. Theory, Ser. B.
[8] Paul D. Seymour,et al. Recognizing graphic matroids , 1981 .
[9] Derek G. Corneil,et al. Complexity of finding embeddings in a k -tree , 1987 .
[10] Bruno Courcelle,et al. The Expression of Graph Properties and Graph Transformations in Monadic Second-Order Logic , 1997, Handbook of Graph Grammars.
[11] Bert Gerards,et al. Branch-Width and Well-Quasi-Ordering in Matroids and Graphs , 2002, J. Comb. Theory, Ser. B.
[12] Bert Gerards,et al. Excluding a planar graph from GF(q)-representable matroids , 2007, J. Comb. Theory, Ser. B.
[13] Bert Gerards,et al. Tangles, tree-decompositions and grids in matroids , 2009, J. Comb. Theory, Ser. B.
[14] Paul D. Seymour,et al. Testing branch-width , 2007, J. Comb. Theory, Ser. B.
[15] Stefan Arnborg,et al. Problems Easy for Tree-Decomposable Graphs (Extended Abstract) , 1988, ICALP.
[16] Hans L. Bodlaender,et al. Dynamic Programming on Graphs with Bounded Treewidth , 1988, ICALP.
[17] Petr Hlinený,et al. A Parametrized Algorithm for Matroid Branch-Width , 2005, SIAM J. Comput..
[18] Petr Hlinený. Branch-width, parse trees, and monadic second-order logic for matroids , 2006, J. Comb. Theory, Ser. B.
[19] Petr Hlinený,et al. On Matroid Representability and Minor Problems , 2006, MFCS.
[20] Bruno Courcelle,et al. The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..
[21] Petr Hlinený,et al. The Tutte Polynomial for Matroids of Bounded Branch-Width , 2006, Combinatorics, Probability and Computing.
[22] Detlef Seese,et al. Easy Problems for Tree-Decomposable Graphs , 1991, J. Algorithms.
[23] Geoff Whittle,et al. Addendum to matroid tree-width , 2009, Eur. J. Comb..
[24] Petr Hlinený,et al. On Matroid Properties Definable in the MSO Logic , 2003, MFCS.
[25] Detlef Seese,et al. Problems Easy for Tree-Decomposable Graphs (Extended Abstract) , 1988, ICALP.
[26] Petr Hliněný,et al. Finding branch-decomposition and rank-decomposition , 2008 .
[27] Petr Hlinený,et al. Branch-width, parse trees, and monadic second-order logic for matroids , 2003, J. Comb. Theory, Ser. B.