Molecular simulation of absolute hydration Gibbs energies of polar compounds

In this work, we present simulation-based predictions of the absolute hydration energy for several simple polar molecules with different functional groups, as well as for more complex multifunctional molecules. Our calculations were performed using the thermodynamic integration methodology where electrostatic and non-polar interactions were treated separately, allowing for a stable transition path between the end-points of the integration. An appropriate methodology for the analytical integration of the simulation data was applied. We compare the performance of three popular molecular mechanics force fields: TraPPE. Gromos and OPLS-AA for the description of solute atoms in MSPC/E water. It is observed that these force fields generally perform well for the simpler molecules, but are less accurate when multifunctional molecules are considered.

[1]  Chris Oostenbrink,et al.  A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force‐field parameter sets 53A5 and 53A6 , 2004, J. Comput. Chem..

[2]  A. Bauer-Brandl,et al.  Thermodynamics of Solutions I: Benzoic Acid and Acetylsalicylic Acid as Models for Drug Substances and the Prediction of Solubility , 2003, Pharmaceutical Research.

[3]  William L. Jorgensen,et al.  Free Energies of Hydration and Pure Liquid Properties of Hydrocarbons from the OPLS All-Atom Model , 1994 .

[4]  Michael R. Shirts,et al.  Extremely precise free energy calculations of amino acid side chain analogs: Comparison of common molecular mechanics force fields for proteins , 2003 .

[5]  Georgios C. Boulougouris,et al.  Engineering a Molecular Model for Water Phase Equilibrium over a Wide Temperature Range , 1998 .

[6]  Arieh Ben-Naim,et al.  Solvation thermodynamics of nonionic solutes , 1984 .

[7]  George A. Kaminski,et al.  Development of an Accurate and Robust Polarizable Molecular Mechanics Force Field from ab Initio Quantum Chemistry , 2004 .

[8]  Ioannis G. Economou,et al.  Effect of the integration method on the accuracy and computational efficiency of free energy calculations using thermodynamic integration , 2010 .

[9]  Magdalena Bacilieri,et al.  Prediction of the aqueous solvation free energy of organic compounds by using autocorrelation of molecular electrostatic potential surface properties combined with response surface analysis. , 2008, Bioorganic & medicinal chemistry.

[10]  P. Kollman Advances and Continuing Challenges in Achieving Realistic and Predictive Simulations of the Properties of Organic and Biological Molecules , 1996 .

[11]  H. Berendsen,et al.  A LEAP-FROG ALGORITHM FOR STOCHASTIC DYNAMICS , 1988 .

[12]  B. Hess Determining the shear viscosity of model liquids from molecular dynamics simulations , 2002 .

[13]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[14]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[15]  Arieh Warshel,et al.  A local reaction field method for fast evaluation of long‐range electrostatic interactions in molecular simulations , 1992 .

[16]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[17]  David L Mobley,et al.  Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent. , 2007, The journal of physical chemistry. B.

[18]  Peter A. Kollman,et al.  Solvation Free Energies of Amides and Amines: Disagreement between Free Energy Calculations and Experiment , 1995 .

[19]  Jed W. Pitera,et al.  A Comparison of Non-Bonded Scaling Approaches for Free Energy Calculations , 2002 .

[20]  A. Mark,et al.  Avoiding singularities and numerical instabilities in free energy calculations based on molecular simulations , 1994 .

[21]  J. Ilja Siepmann,et al.  Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes , 1998 .

[22]  Lee G. Pedersen,et al.  Construction and molecular modeling of phospholipid surfaces , 1990 .

[23]  G. Kamath,et al.  An Improved Force Field for the Prediction of the Vapor−Liquid Equilibria for Carboxylic Acids , 2004 .

[24]  J. Peris,et al.  Pharmacokinetics of the time-dependent elimination of all-trans-retinoic acid in rats , 2004, AAPS PharmSci.

[25]  J. Ilja Siepmann,et al.  Novel Configurational-Bias Monte Carlo Method for Branched Molecules. Transferable Potentials for Phase Equilibria. 2. United-Atom Description of Branched Alkanes , 1999 .

[26]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997 .

[27]  Kathryn N. Rankin,et al.  On the transferability of hydration‐parametrized continuum electrostatics models to solvated binding calculations , 2003, J. Comput. Chem..

[28]  A. Bauer-Brandl,et al.  Solvation and hydration characteristics of ibuprofen and acetylsalicylic acid , 2004, AAPS PharmSci.

[29]  William L. Jorgensen,et al.  Accuracy of free energies of hydration using CM1 and CM3 atomic charges , 2004, J. Comput. Chem..

[30]  B. Hess,et al.  Hydration thermodynamic properties of amino acid analogues: a systematic comparison of biomolecular force fields and water models. , 2006, The journal of physical chemistry. B.

[31]  Charles L. Brooks,et al.  CHARMM fluctuating charge force field for proteins: I parameterization and application to bulk organic liquid simulations , 2004, J. Comput. Chem..

[32]  G. Kamath,et al.  Application of TraPPE-UA force field for determination of vapor–liquid equilibria of carboxylate esters , 2006 .

[33]  J. Ilja Siepmann,et al.  Monte Carlo Calculations for Alcohols and Their Mixtures with Alkanes. Transferable Potentials for Phase Equilibria. 5. United-Atom Description of Primary, Secondary, and Tertiary Alcohols , 2001 .

[34]  J. Ilja Siepmann,et al.  Transferable Potentials for Phase Equilibria. 6. United-Atom Description for Ethers, Glycols, Ketones, and Aldehydes , 2004 .

[35]  John B. O. Mitchell,et al.  Predicting intrinsic aqueous solubility by a thermodynamic cycle. , 2008, Molecular pharmaceutics.

[36]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[37]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[38]  W. L. Jorgensen The Many Roles of Computation in Drug Discovery , 2004, Science.

[39]  Sture Nordholm,et al.  In silico prediction of drug solubility: 1. Free energy of hydration. , 2007, The journal of physical chemistry. B.

[40]  Benoît Roux,et al.  Computations of Absolute Solvation Free Energies of Small Molecules Using Explicit and Implicit Solvent Model. , 2009, Journal of chemical theory and computation.

[41]  Jacopo Tomasi,et al.  Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent , 1994 .

[42]  P. Kollman,et al.  Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models , 1992 .

[43]  P. Kollman,et al.  How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? , 2000 .

[44]  William L. Jorgensen,et al.  OPLS ALL-ATOM MODEL FOR AMINES : RESOLUTION OF THE AMINE HYDRATION PROBLEM , 1999 .

[45]  B. Honig,et al.  Accurate First Principles Calculation of Molecular Charge Distributions and Solvation Energies from Ab Initio Quantum Mechanics and Continuum Dielectric Theory , 1994 .

[46]  Wilfred F van Gunsteren,et al.  Biomolecular modeling: Goals, problems, perspectives. , 2006, Angewandte Chemie.

[47]  Neeraj Rai,et al.  Transferable potentials for phase equilibria. 7. Primary, secondary, and tertiary amines, nitroalkanes and nitrobenzene, nitriles, amides, pyridine, and pyrimidine. , 2005, The journal of physical chemistry. B.

[48]  Michael R. Shirts,et al.  Solvation free energies of amino acid side chain analogs for common molecular mechanics water models. , 2005, The Journal of chemical physics.

[49]  Pengyu Y. Ren,et al.  Consistent treatment of inter‐ and intramolecular polarization in molecular mechanics calculations , 2002, J. Comput. Chem..

[50]  Ronald M. Levy,et al.  SOLVATION FREE ENERGIES OF SMALL AMIDES AND AMINES FROM MOLECULAR DYNAMICS/FREE ENERGY PERTURBATION SIMULATIONS USING PAIRWISE ADDITIVE AND MANY-BODY POLARIZABLE POTENTIALS , 1995 .

[51]  Harry A. Stern,et al.  Development of a polarizable force field for proteins via ab initio quantum chemistry: First generation model and gas phase tests , 2002, J. Comput. Chem..

[52]  Ioannis G. Economou,et al.  Molecular simulation of the hydration Gibbs energy of barbiturates , 2010 .

[53]  Herman J. C. Berendsen,et al.  ALGORITHMS FOR BROWNIAN DYNAMICS , 1982 .

[54]  Miguel Jorge,et al.  1-Octanol/Water Partition Coefficients of n-Alkanes from Molecular Simulations of Absolute Solvation Free Energies. , 2009, Journal of chemical theory and computation.

[55]  P M Cullis,et al.  Affinities of amino acid side chains for solvent water. , 1981, Biochemistry.

[56]  Irwin D Kuntz,et al.  Estimation of Absolute Free Energies of Hydration Using Continuum Methods: Accuracy of Partial Charge Models and Optimization of Nonpolar Contributions , 2022 .