CHEOPS observations of the HD 108236 planetary system: a fifth planet, improved ephemerides, and planetary radii

Context. The detection of a super-Earth and three mini-Neptunes transiting the bright (V = 9.2 mag) star HD 108236 (also known as TOI-1233) was recently reported on the basis of TESS and ground-based light curves. Aims. We perform a first characterisation of the HD 108236 planetary system through high-precision CHEOPS photometry and improve the transit ephemerides and system parameters. Methods. We characterise the host star through spectroscopic analysis and derive the radius with the infrared flux method. We constrain the stellar mass and age by combining the results obtained from two sets of stellar evolutionary tracks. We analyse the available TESS light curves and one CHEOPS transit light curve for each known planet in the system. Results. We find that HD 108236 is a Sun-like star with R⋆ = 0.877 ± 0.008 R⊙, M⋆ = 0.869−0.048+0.050 M⊙, and an age of 6.7−5.1+4.0 Gyr. We report the serendipitous detection of an additional planet, HD 108236 f, in one of the CHEOPS light curves. For this planet, the combined analysis of the TESS and CHEOPS light curves leads to a tentative orbital period of about 29.5 days. From the light curve analysis, we obtain radii of 1.615 ± 0.051, 2.071 ± 0.052, 2.539−0.065+0.062, 3.083 ± 0.052, and 2.017−0.057+0.052 R⊕ for planets HD 108236 b to HD 108236 f, respectively. These values are in agreement with previous TESS-based estimates, but with an improved precision of about a factor of two. We perform a stability analysis of the system, concluding that the planetary orbits most likely have eccentricities smaller than 0.1. We also employ a planetary atmospheric evolution framework to constrain the masses of the five planets, concluding that HD 108236 b and HD 108236 c should have an Earth-like density, while the outer planets should host a low mean molecular weight envelope. Conclusions. The detection of the fifth planet makes HD 108236 the third system brighter than V = 10 mag to host more than four transiting planets. The longer time span enables us to significantly improve the orbital ephemerides such that the uncertainty on the transit times will be of the order of minutes for the years to come. A comparison of the results obtained from the TESS and CHEOPS light curves indicates that for a V ~ 9 mag solar-like star and a transit signal of ~500 ppm, one CHEOPS transit light curve ensures the same level of photometric precision as eight TESS transits combined, although this conclusion depends on the length and position of the gaps in the light curve.

[1]  J. L. Rasilla,et al.  ESPRESSO at VLT , 2020 .

[2]  H. Lammer,et al.  Hydrogen Dominated Atmospheres on Terrestrial Mass Planets: Evidence, Origin and Evolution , 2020, Space Science Reviews.

[3]  J. Laskar,et al.  The hot dayside and asymmetric transit of WASP-189 b seen by CHEOPS , 2020, Astronomy & Astrophysics.

[4]  E. Ford,et al.  Architectures of Exoplanetary Systems. III. Eccentricity and Mutual Inclination Distributions of AMD-stable Planetary Systems , 2020, The Astronomical Journal.

[5]  Constantinos Marios Angelopoulos,et al.  DHP Framework: Digital Health Passports Using Blockchain - Use case on international tourism during the COVID-19 pandemic , 2020, ArXiv.

[6]  P. C. Thao,et al.  TESS Hunt for Young and Maturing Exoplanets (THYME). III. A Two-planet System in the 400 Myr Ursa Major Group , 2020, The Astronomical Journal.

[7]  Chelsea X. Huang,et al.  TESS Discovery of a Super-Earth and Three Sub-Neptunes Hosted by the Bright, Sun-like Star HD 108236 , 2020, The Astronomical Journal.

[8]  R. P. Butler,et al.  The Multiplanet System TOI-421: A Warm Neptune and a Super Puffy Mini-Neptune Transiting a G9 V Star in a Visual Binary , 2020, The Astronomical Journal.

[9]  J. Owen,et al.  Testing exoplanet evaporation with multitransiting systems , 2019, Monthly Notices of the Royal Astronomical Society.

[10]  M. Davies,et al.  The Kepler-11 system: evolution of the stellar high-energy emission and initial planetary atmospheric mass fractions , 2019, Astronomy & Astrophysics.

[11]  D. Kipping,et al.  The multiplicity distribution of Kepler’s exoplanets , 2019, Monthly Notices of the Royal Astronomical Society.

[12]  Chelsea X. Huang,et al.  A Super-Earth and Sub-Neptune Transiting the Late-type M Dwarf LP 791-18 , 2019, The Astrophysical Journal.

[13]  Sara Seager,et al.  Securing the Legacy of TESS through the Care and Maintenance of TESS Planet Ephemerides , 2019, The Astronomical Journal.

[14]  Adam L. Kraus,et al.  TESS Spots a Compact System of Super-Earths around the Naked-eye Star HR 858 , 2019, The Astrophysical Journal.

[15]  E. Lopez,et al.  The Sub-Neptune Desert and Its Dependence on Stellar Type: Controlled by Lifetime X-Ray Irradiation , 2019, The Astrophysical Journal.

[16]  J. Speagle dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences , 2019, Monthly Notices of the Royal Astronomical Society.

[17]  H. Lammer,et al.  Close-in Sub-Neptunes Reveal the Past Rotation History of Their Host Stars: Atmospheric Evolution of Planets in the HD 3167 and K2-32 Planetary Systems , 2019, Astrophysical Journal.

[18]  Keivan G. Stassun,et al.  The L 98-59 System: Three Transiting, Terrestrial-size Planets Orbiting a Nearby M Dwarf , 2019, The Astronomical Journal.

[19]  Keivan G. Stassun,et al.  The Transiting Multi-planet System HD15337: Two Nearly Equal-mass Planets Straddling the Radius Gap , 2019, The Astrophysical Journal.

[20]  Yann Alibert,et al.  New metric to quantify the similarity between planetary systems: application to dimensionality reduction using T-SNE , 2019, Astronomy & Astrophysics.

[21]  Keivan G. Stassun,et al.  Near-resonance in a System of Sub-Neptunes from TESS , 2019, The Astronomical Journal.

[22]  Keivan G. Stassun,et al.  TESS Delivers Its First Earth-sized Planet and a Warm Sub-Neptune , 2018, The Astrophysical Journal.

[23]  H. Lammer,et al.  Grid of upper atmosphere models for 1–40 M⊕ planets: application to CoRoT-7 b and HD 219134 b,c , 2018, Astronomy & Astrophysics.

[24]  D. Gandolfi,et al.  pyaneti: a fast and powerful software suite for multiplanet radial velocity and transit fitting , 2018, Monthly Notices of the Royal Astronomical Society.

[25]  Maxwell X. Cai,et al.  The Orbital Eccentricity of Small Planet Systems , 2018, The Astronomical Journal.

[26]  K. Stassun,et al.  Evidence for a Systematic Offset of −80 μas in the Gaia DR2 Parallaxes , 2018, The Astrophysical Journal.

[27]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[28]  P. Maxted Comparison of the power-2 limb-darkening law from the STAGGER-grid to Kepler light curves of transiting exoplanets , 2018, Astronomy & Astrophysics.

[29]  Clea F. Schumer,et al.  275 Candidates and 149 Validated Planets Orbiting Bright Stars in K2 Campaigns 0–10 , 2018, 1802.05277.

[30]  F. Timmes,et al.  Modules for Experiments in Stellar Astrophysics ( ): Convective Boundaries, Element Diffusion, and Massive Star Explosions , 2017, 1710.08424.

[31]  Andrew Cumming,et al.  The California-Kepler Survey. V. Peas in a Pod: Planets in a Kepler Multi-planet System Are Similar in Size and Regularly Spaced , 2017, 1706.06204.

[32]  Christoph Mordasini,et al.  Compositional Imprints in Density–Distance–Time: A Rocky Composition for Close-in Low-mass Exoplanets from the Location of the Valley of Evaporation , 2017, 1706.00251.

[33]  James E. Owen,et al.  The Evaporation Valley in the Kepler Planets , 2017, 1705.10810.

[34]  Howard Isaacson,et al.  The California-Kepler Survey. III. A Gap in the Radius Distribution of Small Planets , 2017, 1703.10375.

[35]  Daniel Foreman-Mackey,et al.  Fast and Scalable Gaussian Process Modeling with Applications to Astronomical Time Series , 2017, 1703.09710.

[36]  S. Raymond,et al.  Breaking the chains: hot super-Earth systems from migration and disruption of compact resonant chains , 2017, 1703.03634.

[37]  L. Girardi,et al.  A NEW GENERATION OF PARSEC-COLIBRI STELLAR ISOCHRONES INCLUDING THE TP-AGB PHASE , 2017, 1701.08510.

[38]  Nate B. Lust,et al.  ON CORRELATED-NOISE ANALYSES APPLIED TO EXOPLANET LIGHT CURVES , 2016, 1610.01336.

[39]  A. Johansen,et al.  The effects of external planets on inner systems: multiplicities, inclinations and pathways to eccentric warm Jupiters , 2016, 1609.08058.

[40]  Christoph Baranec,et al.  FIVE PLANETS TRANSITING A NINTH MAGNITUDE STAR , 2016, 1606.08441.

[41]  J. Valenti,et al.  Spectroscopy Made Easy: Evolution , 2016, 1606.06073.

[42]  Jieun Choi,et al.  MESA ISOCHRONES AND STELLAR TRACKS (MIST). I. SOLAR-SCALED MODELS , 2016, 1604.08592.

[43]  D. Kipping,et al.  PROBABILISTIC FORECASTING OF THE MASSES AND RADII OF OTHER WORLDS , 2016, 1603.08614.

[44]  P. Maxted ELLC - a fast, flexible light curve model for detached eclipsing binary stars and transiting exoplanets , 2016, 1603.08484.

[45]  H. Rein,et al.  Second-order variational equations for N-body simulations , 2016, 1603.03424.

[46]  Aaron Dotter,et al.  MESA ISOCHRONES AND STELLAR TRACKS (MIST) 0: METHODS FOR THE CONSTRUCTION OF STELLAR ISOCHRONES , 2016, 1601.05144.

[47]  Khadeejah A. Zamudio,et al.  PLANETARY CANDIDATES OBSERVED BY KEPLER. VII. THE FIRST FULLY UNIFORM CATALOG BASED ON THE ENTIRE 48-MONTH DATA SET (Q1–Q17 DR24) , 2015, 1512.06149.

[48]  H. Lammer,et al.  THE EVOLUTION OF STELLAR ROTATION AND THE HYDROGEN ATMOSPHERES OF HABITABLE-ZONE TERRESTRIAL PLANETS , 2015, 1511.03647.

[49]  A. Bonfanti,et al.  Age consistency between exoplanet hosts and field stars , 2015, 1511.01744.

[50]  C. Unterborn,et al.  SCALING THE EARTH: A SENSITIVITY ANALYSIS OF TERRESTRIAL EXOPLANETARY INTERIOR MODELS , 2015, 1510.07582.

[51]  M. Tsantaki,et al.  Identifying the best iron-peak and α-capture elements for chemical tagging: The impact of the number of lines on measured scatter , 2015, 1509.02419.

[52]  A. Santerne,et al.  Constraining planet structure from stellar chemistry : the cases of CoRoT-7, Kepler-10, and Kepler-93 , 2015, 1507.08081.

[53]  Y. Alibert,et al.  Elemental ratios in stars vs planets (Research Note) , 2015, 1507.01343.

[54]  Hanno Rein,et al.  WHFAST: a fast and unbiased implementation of a symplectic Wisdom-Holman integrator for long-term gravitational simulations , 2015, 1506.01084.

[55]  S. Albrecht,et al.  ECCENTRICITY FROM TRANSIT PHOTOMETRY: SMALL PLANETS IN KEPLER MULTI-PLANET SYSTEMS HAVE LOW ECCENTRICITIES , 2015, 1505.02814.

[56]  S. G. Sousa,et al.  ARES v2 - new features and improved performance , 2015, 1504.02725.

[57]  E. Dorfi,et al.  Hydrodynamic simulations of captured protoatmospheres around Earth-like planets , 2015, 1505.06859.

[58]  M. Gudel,et al.  Stellar winds on the main-sequence - II. The evolution of rotation and winds , 2015, 1503.07494.

[59]  A. Jord'an,et al.  Limb darkening and exoplanets: testing stellar model atmospheres and identifying biases in transit parameters , 2015, 1503.07020.

[60]  Yanqin Wu,et al.  Spacing of Kepler Planets: Sculpting by Dynamical Instability , 2015, 1502.05449.

[61]  P. Tackley,et al.  Can we constrain the interior structure of rocky exoplanets from mass and radius measurements , 2015, 1502.03605.

[62]  C. Baranec,et al.  AN ANCIENT EXTRASOLAR SYSTEM WITH FIVE SUB-EARTH-SIZE PLANETS , 2015, 1501.06227.

[63]  A. Bonfanti,et al.  Revising the ages of planet-hosting stars , 2014, 1411.4302.

[64]  Joshua N. Winn,et al.  The Occurrence and Architecture of Exoplanetary Systems , 2014, 1410.4199.

[65]  S. Sousa ARES + MOOG: A Practical Overview of an Equivalent Width (EW) Method to Derive Stellar Parameters , 2014, 1407.5817.

[66]  Mark Clampin,et al.  Transiting Exoplanet Survey Satellite , 2014, 1406.0151.

[67]  D. Kipping Efficient, uninformative sampling of limb darkening coefficients for two-parameter laws , 2013, 1308.0009.

[68]  M. P. Hobson,et al.  Importance Nested Sampling and the MultiNest Algorithm , 2013, The Open Journal of Astrophysics.

[69]  D. Queloz,et al.  CHEOPS: A transit photometry mission for ESA's small mission programme , 2013, 1305.2270.

[70]  L. Girardi,et al.  parsec: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code , 2012, 1208.4498.

[71]  J. Laskar,et al.  Dissipation in planar resonant planetary systems , 2012, 1207.3171.

[72]  V. Adibekyan,et al.  Chemical abundances of 1111 FGK stars from the HARPS GTO planet search program - Galactic stellar populations and planets , 2012, 1207.2388.

[73]  John C. Geary,et al.  ARCHITECTURE OF KEPLER'S MULTI-TRANSITING SYSTEMS. II. NEW INVESTIGATIONS WITH TWICE AS MANY CANDIDATES , 2012, The Astrophysical Journal.

[74]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[75]  H. Rein,et al.  REBOUND: An open-source multi-purpose N-body code for collisional dynamics , 2011, 1110.4876.

[76]  Nicholas J. Wright,et al.  THE STELLAR-ACTIVITY–ROTATION RELATIONSHIP AND THE EVOLUTION OF STELLAR DYNAMOS , 2011, 1109.4634.

[77]  I. Ribas,et al.  Estimation of the XUV radiation onto close planets and their evaporation , 2011, 1105.0550.

[78]  S. Bloemen,et al.  Gravity and limb-darkening coefficients for the Kepler, CoRoT, Spitzer, uvby, UBVRIJHK, and Sloan photometric systems , 2011 .

[79]  Jon M. Jenkins,et al.  ARCHITECTURE AND DYNAMICS OF KEPLER'S CANDIDATE MULTIPLE TRANSITING PLANET SYSTEMS , 2011, 1102.0543.

[80]  J. Winn Exoplanet Transits and Occultations , 2010 .

[81]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[82]  Ryan M. Ferguson,et al.  THE JINA REACLIB DATABASE: ITS RECENT UPDATES AND IMPACT ON TYPE-I X-RAY BURSTS , 2010, The Astrophysical Journal Supplement Series.

[83]  A. B. Balantekin,et al.  Solar fusion cross sections II: the pp chain and CNO cycles , 2010, 1004.2318.

[84]  David P. O'Brien,et al.  THE COMPOSITIONAL DIVERSITY OF EXTRASOLAR TERRESTRIAL PLANETS. I. IN SITU SIMULATIONS , 2010, 1004.0971.

[85]  Bernd Freytag,et al.  Solar Chemical Abundances Determined with a CO5BOLD 3D Model Atmosphere , 2010, 1003.1190.

[86]  Sean N. Raymond,et al.  GENERALIZED MILANKOVITCH CYCLES AND LONG-TERM CLIMATIC HABITABILITY , 2010, 1002.4877.

[87]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[88]  A. Gimenez,et al.  Accurate masses and radii of normal stars: modern results and applications , 2009, 0908.2624.

[89]  Austria,et al.  Low-temperature gas opacity. ÆSOPUS: a versatile and quick computational tool , 2009, 0907.3248.

[90]  L. Hillenbrand,et al.  Improved Age Estimation for Solar-Type Dwarfs Using Activity-Rotation Diagnostics , 2008, 0807.1686.

[91]  D. Queloz,et al.  Spectroscopic parameters for 451 stars in the HARPS GTO planet search program - Stellar [Fe/H] and the frequency of exo-Neptunes , 2008, 0805.4826.

[92]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[93]  R. Scuflaire,et al.  CLÉS, Code Liégeois d’Évolution Stellaire , 2007, 0712.3471.

[94]  F. Feroz,et al.  Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses , 2007, 0704.3704.

[95]  Porto,et al.  A new code for automatic determination of equivalent widths: Automatic Routine for line Equivalent widths in stellar Spectra (ARES) , 2007, astro-ph/0703696.

[96]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[97]  Christopher K. I. Williams,et al.  Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) , 2005 .

[98]  Matthew J. Holman,et al.  The Use of Transit Timing to Detect Terrestrial-Mass Extrasolar Planets , 2005, Science.

[99]  David R. Alexander,et al.  Low-Temperature Opacities , 2005, astro-ph/0502045.

[100]  Carles Simó,et al.  Phase space structure of multi-dimensional systems by means of the mean exponential growth factor of nearby orbits , 2003 .

[101]  E. Ford Quantifying the Uncertainty in the Orbits of Extrasolar Planets , 2003, astro-ph/0305441.

[102]  Forrest J. Rogers,et al.  Updated Opal Opacities , 1996 .

[103]  M. J. Shallis,et al.  Stellar angular diameters from infrared photometry. Application to Arcturus and other stars; with effective temperatures. , 1977 .

[104]  N. Pizzolato,et al.  The stellar activity-rotation relationship revisited: Dependence of saturated and non-saturated X-ray emission regimes on stellar mass for late-type dwarfs ? , 2003 .

[105]  Jordi MIRALDA-ESCUDEç ORBITAL PERTURBATIONS OF TRANSITING PLANETS: A POSSIBLE METHOD TO MEASURE STELLAR QUADRUPOLES AND TO DETECT EARTH-MASS PLANETS , 2002 .

[106]  Robert L. Kurucz,et al.  SYNTHE Spectrum Synthesis Programs and Line Data. , 1993 .