Convergence to the maximal invariant measure for a zero-range process with random rates

[1]  A. Koukkous Hydrodynamic behavior of symmetric zero-range processes with random rates , 1999 .

[2]  J. Krug,et al.  Hydrodynamics and Platoon Formation for a Totally Asymmetric Exclusion Model with Particlewise Disorder , 1999 .

[3]  Equilibrium fluctuations for zero range processes in random environment , 1998 .

[4]  Hydrodynamical limit for spatially heterogeneous simple exclusion processes , 1998 .

[5]  Joachim Krug,et al.  LETTER TO THE EDITOR: Phase transitions in driven diffusive systems with random rates , 1996 .

[6]  M. Evans Bose-Einstein condensation in disordered exclusion models and relation to traffic flow , 1996, cond-mat/9606036.

[7]  L. Chebotarev Total delay time and tunnelling time for non-rectangular potential barriers , 1996 .

[8]  C. Landim Hydrodynamical limit for space inhomogeneous one-dimensional totally asymmetric zero-range processes , 1996 .

[9]  Pablo A. Ferrari,et al.  Asymmetric conservative processes with random rates , 1996 .

[10]  Shocks in the Burgers Equation and the Asymmetric Simple Exclusion Process , 1992 .

[11]  Eric Goles,et al.  Statistical physics, automata networks and dynamical systems , 1992 .

[12]  N. H. Bingham,et al.  PROBABILITY (Graduate Texts in Mathematics Vol. 95) , 1985 .

[13]  E. Andjel Invariant Measures for the Zero Range Process , 1982 .

[14]  Anthony Unwin,et al.  Reversibility and Stochastic Networks , 1980 .

[15]  E. Dynkin Sufficient Statistics and Extreme Points , 1978 .

[16]  J. R. Jackson Networks of Waiting Lines , 1957 .