Three-Dimensional Front Tracking

We describe a three-dimensional front tracking algorithm, discuss its numerical implementation, and present studies to validate the correctness of this approach. Based on the results of the two-dimensional computations, we expect three-dimensional front tracking to significantly improve computational efficiencies for problems dominated by discontinuities. In some cases, for which the interface computations display considerable numerical sensitivity, we expect a greatly enhanced capability.

[1]  Gretar Tryggvason,et al.  Bifurcation of tracked scalar waves , 1986 .

[2]  F. Frances Yao,et al.  Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[3]  Gino Moretti Thoughts and Afterthoughts About Shock Computations. , 1972 .

[4]  Ralph Menikoff,et al.  Errors When Shock Waves Interact Due to Numerical Shock Width , 1994, SIAM J. Sci. Comput..

[5]  B Hen A NUMERICAL METHOD WITH HIGH ACCURACY FOR CALCULATING THE INTERACTIONS BETWEEN DISCONTINUITIES IN THREE INDEPENDENT VARIABLES , 1980 .

[6]  De-Kang Mao A treatment of discontinuities in shock-capturing finite difference methods , 1991 .

[7]  Yang,et al.  Quantitative theory of Richtmyer-Meshkov instability. , 1993, Physical review letters.

[8]  David H. Sharp,et al.  Numerical investigation of Richtmyer–Meshkov instability using front tracking , 1995, Journal of Fluid Mechanics.

[9]  James M. Hyman,et al.  Numerical methods for tracking interfaces , 1984 .

[10]  Oliver A. McBryan,et al.  3. A Front Tracking Reservoir Simulator, Five-Spot Validation Studies and the Water Coning Problem , 1983 .

[11]  Oliver A. McBryan,et al.  A computational model for interfaces , 1985 .

[12]  Phillip Colella,et al.  Conservative front-tracking for inviscid compressible flow , 1991 .

[13]  L. F. Henderson Regions and Boundaries for Diffracting Shock Wave Systems , 1987 .

[14]  Phillip Colella,et al.  A Front Tracking Method for Compressible Flames in One Dimension , 1995, SIAM J. Sci. Comput..

[15]  James Glimm Nonlinear Waves: Overview and Problems , 1991 .

[16]  David H. Sharp,et al.  The dynamics of bubble growth for Rayleigh-Taylor unstable interfaces , 1987 .

[17]  G. Moretti,et al.  A complete numerical technique for the calculation of three-dimensional inviscid supersonic flows , 1972 .

[18]  You-Lan Zhu,et al.  Some new developments of the singularity-separating difference method , 1982 .

[19]  James Jones The spherical detonation , 1991 .

[20]  Bruce Bukiet,et al.  Competition between curvature and chemistry in a spherically expanding detonation , 1988 .

[21]  JAMES GLIMM,et al.  MULTISCALE STRUCTURE FOR HYPERBOLIC WAVES , 1993 .

[22]  Randall J. LeVeque,et al.  One-Dimensional Front Tracking Based on High Resolution Wave Propagation Methods , 1995, SIAM J. Sci. Comput..

[23]  Ralph Menikoff Determining curvature effect on detonation velocity from rate stick experiment , 1989, IMPACT Comput. Sci. Eng..

[24]  John W. Grove,et al.  A survey of the analysis of irregular shock refractions and its application to front tracking methods , 1992, Matemática Contemporânea.

[25]  James Glimm,et al.  Numerical Study for the Three-Dimensional Rayleigh-Taylor Instability through the TVD/AC Scheme and Parallel Computation , 1996 .

[26]  Herbert Edelsbrunner,et al.  Tetrahedrizing Point Sets in Three Dimensions , 1988, ISSAC.

[27]  Xiaolin Li Study of three-dimensional Rayleigh--Taylor instability in compressible fluids through level set method and parallel computation , 1993 .

[28]  P Charrier,et al.  On front-tracking methods applied to hyperbolic systems of nonlinear conservation laws , 1986 .

[29]  James Glimm,et al.  Front tracking for hyperbolic systems , 1981 .

[30]  John W. Grove,et al.  IRREGULAR SHOCK REFRACTIONS AT A MATERIAL INTERFACE , 1992 .

[31]  Rida T. Farouki,et al.  A shock‐tracking algorithm for surface evolution under reactive‐ion etching , 1993 .

[32]  N. Steenrod,et al.  Foundations of Algebraic Topology , 1952 .

[33]  Yuefan Deng,et al.  A renormalization group scaling analysis for compressible two-phase flow , 1993 .

[34]  Raimund Seidel,et al.  On the difficulty of tetrahedralizing 3-dimensional non-convex polyhedra , 1989, SCG '89.

[35]  John W. Grove,et al.  Applications of front tracking to the simulation of shock refractions and unstable mixing , 1994 .

[36]  Ralph Menikoff,et al.  Anomalous reflection of a shock wave at a fluid interface , 1990, Journal of Fluid Mechanics.

[37]  Burton Wendroff,et al.  AZTEC: a front tracking code based on Godunov's method , 1986 .

[38]  John W. Grove,et al.  Front Tracking Simulations of Shock Refractions and Shock-Induced Mixing , 1995 .

[39]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[40]  Ralph Menikoff Curvature effect on steady detonation wave , 1989 .

[41]  S. Osher,et al.  Computing interface motion in compressible gas dynamics , 1992 .

[42]  N. Risebro,et al.  A front tracking method for conservation laws in one dimension , 1992 .

[43]  Qiang Zhang,et al.  The application of front tracking to the simulation of shock refractions and shock accelerated interface mixing , 1993 .

[44]  Phillip Colella,et al.  A conservative front tracking method for hyperbolic conservation laws , 1987 .

[45]  D. Sharp An overview of Rayleigh-Taylor instability☆ , 1984 .

[46]  J. Pain Fluid Dynamics , 1967, Nature.

[47]  John W. Grove,et al.  The interaction of shock waves with fluid interfaces , 1989 .

[48]  Xia-Xi Ding,et al.  Multiscale structure for hyperbolic waves , 1996 .

[49]  Randall J. LeVeque,et al.  Two-Dimensional Front Tracking Based on High Resolution Wave Propagation Methods , 1996 .