Integration and Approximation Based on Scramble Sampling in Arbitrary Dimensions

This paper considers integration in the worst case setting and approximation in the average case setting based on the scramble sampling scheme proposed by A. B. Owen (1995, Lecture Notes in Statistics, Vol. 106, pp. 299?317, Springer-Verlag, New York.) The tractability and strong tractability exponents are found for function spaces with reproducing/covariance kernels that are scramble-invariant. Integration and approximation for a space with a non-scramble-invariant kernel are no harder than the corresponding problems with the associated scramble-invariant kernel. This enables us to derive tractability results for weighted Sobolev spaces.

[1]  A. Owen Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .

[2]  Henryk Wozniakowski,et al.  The exponent of discrepancy is at most 1.4778 , 1997, Math. Comput..

[3]  Fred J. Hickernell,et al.  The Mean Square Discrepancy of Scrambled (t, s)-Sequences , 2000, SIAM J. Numer. Anal..

[4]  Rong-Xian Yue VARIANCE OF QUADRATURE OVER SCRAMBLED UNIONS OF NETS , 1999 .

[5]  A. Owen Scrambled net variance for integrals of smooth functions , 1997 .

[6]  Art B. Owen,et al.  Scrambling Sobol' and Niederreiter-Xing Points , 1998, J. Complex..

[7]  F. J. Hickernell,et al.  Tractability of Multivariate Integration for Periodic Functions , 2001, J. Complex..

[8]  Rong-Xian Yue,et al.  On the variance of quadrature over scrambled nets and sequences , 1999 .

[9]  Fred J. Hickernell,et al.  The mean square discrepancy of randomized nets , 1996, TOMC.

[10]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[11]  Henryk Wozniakowski,et al.  Tractability of Multivariate Integration for Weighted Korobov Classes , 2001, J. Complex..

[12]  Fred J. Hickernell,et al.  Integration and approximation in arbitrary dimensions , 2000, Adv. Comput. Math..

[13]  Fred J. Hickernell,et al.  The asymptotic efficiency of randomized nets for quadrature , 1999, Math. Comput..

[14]  Henryk Wozniakowski,et al.  When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..

[15]  A. Owen Monte Carlo Variance of Scrambled Net Quadrature , 1997 .