Integration and Approximation Based on Scramble Sampling in Arbitrary Dimensions
暂无分享,去创建一个
[1] A. Owen. Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .
[2] Henryk Wozniakowski,et al. The exponent of discrepancy is at most 1.4778 , 1997, Math. Comput..
[3] Fred J. Hickernell,et al. The Mean Square Discrepancy of Scrambled (t, s)-Sequences , 2000, SIAM J. Numer. Anal..
[4] Rong-Xian Yue. VARIANCE OF QUADRATURE OVER SCRAMBLED UNIONS OF NETS , 1999 .
[5] A. Owen. Scrambled net variance for integrals of smooth functions , 1997 .
[6] Art B. Owen,et al. Scrambling Sobol' and Niederreiter-Xing Points , 1998, J. Complex..
[7] F. J. Hickernell,et al. Tractability of Multivariate Integration for Periodic Functions , 2001, J. Complex..
[8] Rong-Xian Yue,et al. On the variance of quadrature over scrambled nets and sequences , 1999 .
[9] Fred J. Hickernell,et al. The mean square discrepancy of randomized nets , 1996, TOMC.
[10] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[11] Henryk Wozniakowski,et al. Tractability of Multivariate Integration for Weighted Korobov Classes , 2001, J. Complex..
[12] Fred J. Hickernell,et al. Integration and approximation in arbitrary dimensions , 2000, Adv. Comput. Math..
[13] Fred J. Hickernell,et al. The asymptotic efficiency of randomized nets for quadrature , 1999, Math. Comput..
[14] Henryk Wozniakowski,et al. When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..
[15] A. Owen. Monte Carlo Variance of Scrambled Net Quadrature , 1997 .