Efficient Binomial Channel Capacity Computation with an Application to Molecular Communication
暂无分享,去创建一个
Richard D. Wesel | Muriel Médard | Lieven Vandenberghe | Christos Komninakis | Emily E. Wesel | L. Vandenberghe | M. Médard | R. Wesel | C. Komninakis
[1] L. G. H. Cijan. A polynomial algorithm in linear programming , 1979 .
[2] Imre Csiszár,et al. Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .
[3] Richard D. Wesel,et al. Capacity of the binomial channel, or minimax redundancy for memoryless sources , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).
[4] Michael J. Todd,et al. Feature Article - The Ellipsoid Method: A Survey , 1981, Oper. Res..
[5] Raviraj S. Adve,et al. Information Rates of ASK-Based Molecular Communication in Fluid Media , 2015, IEEE Transactions on Molecular, Biological and Multi-Scale Communications.
[6] Hans S. Witsenhausen. Some aspects of convexity useful in information theory , 1980, IEEE Trans. Inf. Theory.
[7] L. Khachiyan. Polynomial algorithms in linear programming , 1980 .
[8] Richard E. Blahut,et al. Computation of channel capacity and rate-distortion functions , 1972, IEEE Trans. Inf. Theory.
[9] W. Pranger. Extreme points of convex sets , 1973 .
[10] Andrea J. Goldsmith,et al. Capacity of molecular channels with imperfect particle-intensity modulation and detection , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).
[11] R. Gallager. Information Theory and Reliable Communication , 1968 .
[12] Thomas M. Cover,et al. Elements of Information Theory , 2005 .