A planar four-loop form factor and cusp anomalous dimension in QCD

[1]  R. Schabinger,et al.  Computation of form factors in massless QCD with finite master integrals , 2015, 1510.06758.

[2]  B. Kniehl,et al.  Master integrals for the four-loop Sudakov form factor , 2015, 1508.03717.

[3]  E. Panzer Feynman integrals and hyperlogarithms , 2015, 1506.07243.

[4]  Enrico Herrmann,et al.  Logarithmic singularities and maximally supersymmetric amplitudes , 2014, 1412.8584.

[5]  J. Henn Lectures on differential equations for Feynman integrals , 2014, 1412.2296.

[6]  N. Arkani-Hamed,et al.  Singularity structure of maximally supersymmetric scattering amplitudes. , 2014, Physical review letters.

[7]  A. V. Smirnov,et al.  FIRE5: A C++ implementation of Feynman Integral REduction , 2014, Comput. Phys. Commun..

[8]  E. Panzer Feynman integrals via hyperlogarithms , 2014, 1407.0074.

[9]  K. Melnikov,et al.  Non-planar master integrals for the production of two off-shell vector bosons in collisions of massless partons , 2014, 1404.5590.

[10]  A. Smirnov,et al.  Evaluating single-scale and/or non-planar diagrams by differential equations , 2013, 1312.2588.

[11]  R. N. Lee LiteRed 1.4: a powerful tool for reduction of multiloop integrals , 2013, 1310.1145.

[12]  J. Henn Multiloop integrals in dimensional regularization made simple. , 2013, Physical review letters.

[13]  A. V. Smirnov,et al.  FIRE4, LiteRed and accompanying tools to solve integration by parts relations , 2013, Comput. Phys. Commun..

[14]  T. Huber The three-loop form factor in N=4 super Yang-Mills , 2013 .

[15]  V. Smirnov Analytic Tools for Feynman Integrals , 2013 .

[16]  L. Mason,et al.  From the holomorphic Wilson loop to ‘d log’ loop-integrands of super-Yang-Mills amplitudes , 2012, 1212.6228.

[17]  R. N. Lee Presenting LiteRed: a tool for the Loop InTEgrals REDuction , 2012, 1212.2685.

[18]  B. Kniehl,et al.  Color-kinematic duality for form factors , 2012, 1211.7028.

[19]  A. Postnikov,et al.  Scattering Amplitudes and the Positive Grassmannian , 2012, 1212.5605.

[20]  N. Arkani-Hamed,et al.  Local integrals for planar scattering amplitudes , 2012, Journal of High Energy Physics.

[21]  Takahiro Ueda,et al.  FORM version 4.0 , 2012, Comput. Phys. Commun..

[22]  T. Huber,et al.  The three-loop form factor in $ \mathcal{N} = {4} $ super Yang-Mills , 2011, 1112.4524.

[23]  A. Smirnov,et al.  Master integrals for four-loop massless propagators up to weight twelve , 2011, 1108.0732.

[24]  V. Smirnov,et al.  Analytic epsilon expansion of three-loop on-shell master integrals up to four-loop transcendentality weight , 2011 .

[25]  T. Huber,et al.  The quark and gluon form factors to three loops in QCD through to $ \mathcal{O}\left( {{\epsilon^2}} \right) $ , 2010, 1010.4478.

[26]  V. Smirnov,et al.  Analytic Epsilon Expansions of Master Integrals Corresponding to Massless Three-Loop Form Factors and Three-Loop g-2 up to Four-Loop Transcendentality Weight , 2010, 1010.1334.

[27]  C. Studerus,et al.  Calculation of the quark and gluon form factors to three loops in QCD , 2010, 1004.3653.

[28]  K. Chetyrkin,et al.  Four Loop Massless Propagators: an Algebraic Evaluation of All Master Integrals , 2010, 1004.1153.

[29]  R. N. Lee,et al.  Space-time dimensionality D as complex variable: Calculating loop integrals using dimensional recurrence relation and analytical properties with respect to D , 2009, 0911.0252.

[30]  T. Becher,et al.  Erratum: On the structure of infrared singularities of gauge-theory amplitudes , 2009, Journal of High Energy Physics.

[31]  M. Steinhauser,et al.  Quark and gluon form factors to three loops. , 2009, Physical review letters.

[32]  A. Smirnov Algorithm FIRE—Feynman Integral REduction , 2008, 0807.3243.

[33]  F. Cachazo Sharpening The Leading Singularity , 2008, 0803.1988.

[34]  A. Vogt,et al.  Three-loop results for quark and gluon form-factors , 2005, hep-ph/0508055.

[35]  D. Maître HPL, a Mathematica implementation of the harmonic polylogarithms , 2005, Comput. Phys. Commun..

[36]  T. Huber,et al.  Two-loop quark and gluon form factors in dimensional regularisation , 2005, hep-ph/0507061.

[37]  A. Vogt,et al.  The Three-loop splitting functions in QCD: The Singlet case , 2004, hep-ph/0404111.

[38]  A. Vogt,et al.  The Three-Loop Splitting Functions in QCD: The Non-Singlet Case , 2004, hep-ph/0403192.

[39]  G. Sterman,et al.  Multi-loop amplitudes and resummation☆ , 2002, hep-ph/0210130.

[40]  C. Berger Higher orders in A ( α s ) / [ 1 − x ] + of nonsinglet partonic splitting functions , 2002, hep-ph/0209107.

[41]  V. Smirnov Applied Asymptotic Expansions in Momenta and Masses , 2001 .

[42]  J. Vermaseren New features of FORM , 2000, math-ph/0010025.

[43]  A. Vogt Next-to-next-to-leading logarithmic threshold resummation for deep-inelastic scattering and the Drell–Yan process , 2000, hep-ph/0010146.

[44]  T. Gehrmann,et al.  Differential Equations for Two-Loop Four-Point Functions , 1999, hep-ph/9912329.

[45]  T. Seidensticker Automatic application of successive asymptotic expansions of Feynman diagrams , 1999, hep-ph/9905298.

[46]  J. Vermaseren,et al.  Harmonic Polylogarithms , 1999, hep-ph/9905237.

[47]  Denis Bernard,et al.  Vertex Operator Solutions of¶2d Dimensionally Reduced Gravity , 1999, solv-int/9902017.

[48]  V. Smirnov,et al.  The regional strategy in the asymptotic expansion of two-loop vertex feynman diagrams , 1998, hep-ph/9812529.

[49]  R. Harlander,et al.  Corrections of to the decay of the Z boson into bottom quarks , 1997, hep-ph/9712228.

[50]  E. Remiddi Differential equations for Feynman graph amplitudes , 1997, Il Nuovo Cimento A.

[51]  M. Beneke,et al.  Asymptotic expansion of Feynman integrals near threshold , 1997, hep-ph/9711391.

[52]  Tarasov Connection between Feynman integrals having different values of the space-time dimension. , 1996, Physical review. D, Particles and fields.

[53]  M. Beneke,et al.  Power corrections and renormalons in Drell-Yan production , 1995, hep-ph/9506452.

[54]  J. Gracey Anomalous dimension of non-singlet Wilson operators at O(1Nf in deep inelastic scattering , 1994, hep-ph/9401214.

[55]  P. Nogueira Automatic Feynman graph generation , 1993 .

[56]  I. A. Korchemskaya,et al.  On light-like Wilson loops , 1992 .

[57]  A. Kotikov Differential equations method. New technique for massive Feynman diagram calculation , 1991 .

[58]  G. Sterman,et al.  Analytic continuation of the Sudakov form factor in QCD. , 1990, Physical review. D, Particles and fields.

[59]  W. Neerven,et al.  The calculation of the second order soft and virtual contributions to the Drell-Yan cross section , 1989 .

[60]  W. Neerven,et al.  Second order logarithmic corrections to the Drell-Yan cross-section , 1988 .

[61]  G. Kramer,et al.  Two-jet cross section ine+e− annihilation , 1987 .

[62]  Theophil Ohrndorf The infrared regularization dependence of the asymptotic behavior of the Sudakov form factor in QCD , 1983 .

[63]  A. Sen Asymptotic behavior of the Sudakov form factor in quantum chromodynamics , 1981 .

[64]  F. Tkachov,et al.  Integration by parts: The algorithm to calculate β-functions in 4 loops , 1981 .

[65]  J. Collins Algorithm to compute corrections to the Sudakov form factor , 1980 .

[66]  A. Mueller Asymptotic behavior of the Sudakov form factor , 1979 .

[67]  W. Marsden I and J , 2012 .

[68]  Z. Bern,et al.  Dimensionally Regulated Pentagon Integrals , 1998 .

[69]  M. Steinhauser,et al.  Complete Corrections of O ( αα s ) to the Decay of the Z Boson into Bottom Quarks , 1997 .

[70]  W. Wasow Asymptotic expansions for ordinary differential equations , 1965 .