A planar four-loop form factor and cusp anomalous dimension in QCD
暂无分享,去创建一个
[1] R. Schabinger,et al. Computation of form factors in massless QCD with finite master integrals , 2015, 1510.06758.
[2] B. Kniehl,et al. Master integrals for the four-loop Sudakov form factor , 2015, 1508.03717.
[3] E. Panzer. Feynman integrals and hyperlogarithms , 2015, 1506.07243.
[4] Enrico Herrmann,et al. Logarithmic singularities and maximally supersymmetric amplitudes , 2014, 1412.8584.
[5] J. Henn. Lectures on differential equations for Feynman integrals , 2014, 1412.2296.
[6] N. Arkani-Hamed,et al. Singularity structure of maximally supersymmetric scattering amplitudes. , 2014, Physical review letters.
[7] A. V. Smirnov,et al. FIRE5: A C++ implementation of Feynman Integral REduction , 2014, Comput. Phys. Commun..
[8] E. Panzer. Feynman integrals via hyperlogarithms , 2014, 1407.0074.
[9] K. Melnikov,et al. Non-planar master integrals for the production of two off-shell vector bosons in collisions of massless partons , 2014, 1404.5590.
[10] A. Smirnov,et al. Evaluating single-scale and/or non-planar diagrams by differential equations , 2013, 1312.2588.
[11] R. N. Lee. LiteRed 1.4: a powerful tool for reduction of multiloop integrals , 2013, 1310.1145.
[12] J. Henn. Multiloop integrals in dimensional regularization made simple. , 2013, Physical review letters.
[13] A. V. Smirnov,et al. FIRE4, LiteRed and accompanying tools to solve integration by parts relations , 2013, Comput. Phys. Commun..
[14] T. Huber. The three-loop form factor in N=4 super Yang-Mills , 2013 .
[15] V. Smirnov. Analytic Tools for Feynman Integrals , 2013 .
[16] L. Mason,et al. From the holomorphic Wilson loop to ‘d log’ loop-integrands of super-Yang-Mills amplitudes , 2012, 1212.6228.
[17] R. N. Lee. Presenting LiteRed: a tool for the Loop InTEgrals REDuction , 2012, 1212.2685.
[18] B. Kniehl,et al. Color-kinematic duality for form factors , 2012, 1211.7028.
[19] A. Postnikov,et al. Scattering Amplitudes and the Positive Grassmannian , 2012, 1212.5605.
[20] N. Arkani-Hamed,et al. Local integrals for planar scattering amplitudes , 2012, Journal of High Energy Physics.
[21] Takahiro Ueda,et al. FORM version 4.0 , 2012, Comput. Phys. Commun..
[22] T. Huber,et al. The three-loop form factor in $ \mathcal{N} = {4} $ super Yang-Mills , 2011, 1112.4524.
[23] A. Smirnov,et al. Master integrals for four-loop massless propagators up to weight twelve , 2011, 1108.0732.
[24] V. Smirnov,et al. Analytic epsilon expansion of three-loop on-shell master integrals up to four-loop transcendentality weight , 2011 .
[25] T. Huber,et al. The quark and gluon form factors to three loops in QCD through to $ \mathcal{O}\left( {{\epsilon^2}} \right) $ , 2010, 1010.4478.
[26] V. Smirnov,et al. Analytic Epsilon Expansions of Master Integrals Corresponding to Massless Three-Loop Form Factors and Three-Loop g-2 up to Four-Loop Transcendentality Weight , 2010, 1010.1334.
[27] C. Studerus,et al. Calculation of the quark and gluon form factors to three loops in QCD , 2010, 1004.3653.
[28] K. Chetyrkin,et al. Four Loop Massless Propagators: an Algebraic Evaluation of All Master Integrals , 2010, 1004.1153.
[29] R. N. Lee,et al. Space-time dimensionality D as complex variable: Calculating loop integrals using dimensional recurrence relation and analytical properties with respect to D , 2009, 0911.0252.
[30] T. Becher,et al. Erratum: On the structure of infrared singularities of gauge-theory amplitudes , 2009, Journal of High Energy Physics.
[31] M. Steinhauser,et al. Quark and gluon form factors to three loops. , 2009, Physical review letters.
[32] A. Smirnov. Algorithm FIRE—Feynman Integral REduction , 2008, 0807.3243.
[33] F. Cachazo. Sharpening The Leading Singularity , 2008, 0803.1988.
[34] A. Vogt,et al. Three-loop results for quark and gluon form-factors , 2005, hep-ph/0508055.
[35] D. Maître. HPL, a Mathematica implementation of the harmonic polylogarithms , 2005, Comput. Phys. Commun..
[36] T. Huber,et al. Two-loop quark and gluon form factors in dimensional regularisation , 2005, hep-ph/0507061.
[37] A. Vogt,et al. The Three-loop splitting functions in QCD: The Singlet case , 2004, hep-ph/0404111.
[38] A. Vogt,et al. The Three-Loop Splitting Functions in QCD: The Non-Singlet Case , 2004, hep-ph/0403192.
[39] G. Sterman,et al. Multi-loop amplitudes and resummation☆ , 2002, hep-ph/0210130.
[40] C. Berger. Higher orders in A ( α s ) / [ 1 − x ] + of nonsinglet partonic splitting functions , 2002, hep-ph/0209107.
[41] V. Smirnov. Applied Asymptotic Expansions in Momenta and Masses , 2001 .
[42] J. Vermaseren. New features of FORM , 2000, math-ph/0010025.
[43] A. Vogt. Next-to-next-to-leading logarithmic threshold resummation for deep-inelastic scattering and the Drell–Yan process , 2000, hep-ph/0010146.
[44] T. Gehrmann,et al. Differential Equations for Two-Loop Four-Point Functions , 1999, hep-ph/9912329.
[45] T. Seidensticker. Automatic application of successive asymptotic expansions of Feynman diagrams , 1999, hep-ph/9905298.
[46] J. Vermaseren,et al. Harmonic Polylogarithms , 1999, hep-ph/9905237.
[47] Denis Bernard,et al. Vertex Operator Solutions of¶2d Dimensionally Reduced Gravity , 1999, solv-int/9902017.
[48] V. Smirnov,et al. The regional strategy in the asymptotic expansion of two-loop vertex feynman diagrams , 1998, hep-ph/9812529.
[49] R. Harlander,et al. Corrections of to the decay of the Z boson into bottom quarks , 1997, hep-ph/9712228.
[50] E. Remiddi. Differential equations for Feynman graph amplitudes , 1997, Il Nuovo Cimento A.
[51] M. Beneke,et al. Asymptotic expansion of Feynman integrals near threshold , 1997, hep-ph/9711391.
[52] Tarasov. Connection between Feynman integrals having different values of the space-time dimension. , 1996, Physical review. D, Particles and fields.
[53] M. Beneke,et al. Power corrections and renormalons in Drell-Yan production , 1995, hep-ph/9506452.
[54] J. Gracey. Anomalous dimension of non-singlet Wilson operators at O(1Nf in deep inelastic scattering , 1994, hep-ph/9401214.
[55] P. Nogueira. Automatic Feynman graph generation , 1993 .
[56] I. A. Korchemskaya,et al. On light-like Wilson loops , 1992 .
[57] A. Kotikov. Differential equations method. New technique for massive Feynman diagram calculation , 1991 .
[58] G. Sterman,et al. Analytic continuation of the Sudakov form factor in QCD. , 1990, Physical review. D, Particles and fields.
[59] W. Neerven,et al. The calculation of the second order soft and virtual contributions to the Drell-Yan cross section , 1989 .
[60] W. Neerven,et al. Second order logarithmic corrections to the Drell-Yan cross-section , 1988 .
[61] G. Kramer,et al. Two-jet cross section ine+e− annihilation , 1987 .
[62] Theophil Ohrndorf. The infrared regularization dependence of the asymptotic behavior of the Sudakov form factor in QCD , 1983 .
[63] A. Sen. Asymptotic behavior of the Sudakov form factor in quantum chromodynamics , 1981 .
[64] F. Tkachov,et al. Integration by parts: The algorithm to calculate β-functions in 4 loops , 1981 .
[65] J. Collins. Algorithm to compute corrections to the Sudakov form factor , 1980 .
[66] A. Mueller. Asymptotic behavior of the Sudakov form factor , 1979 .
[67] W. Marsden. I and J , 2012 .
[68] Z. Bern,et al. Dimensionally Regulated Pentagon Integrals , 1998 .
[69] M. Steinhauser,et al. Complete Corrections of O ( αα s ) to the Decay of the Z Boson into Bottom Quarks , 1997 .
[70] W. Wasow. Asymptotic expansions for ordinary differential equations , 1965 .