Visualization and dimensional scaling for some three-body problems in atomic and molecular quantum mechanics

Three-body problems in atomic and molecular quantum mechanics, comprising one electron–two nuclei and two electron–one nucleus, are studied from their Schrodinger–Born–Oppenheimer models. The following are main topics of interest in this paper: (1) review of foundational mathematical properties of the multiparticle Schrodinger operator, (2) visualization of H2+ (hydrogen molecular ion)-like and He (helium)-like molecular and atomic states, and (3) spectrum of He obtained by the large-dimension scaling limit. The authors begin with topic (1) for the tutorial purpose and devote topics (2) and (3) to new contributions of the analytical, numerical, and visualization nature. Relevant heuristics, graphics, proofs, and calculations are presented.

[1]  D. R. Bates,et al.  Exact wave functions of HeH2+ , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  J. D. Morgan,et al.  Convergence properties of Fock's expansion for S-state eigenfunctions of the helium atom , 1986 .

[3]  D. Herschbach,et al.  Dimensional Scaling in Chemical Physics , 1993 .

[4]  V. Ostrovsky,et al.  Vibro-rotational states of the two-electron atom. II: Two interacting particles on the sphere , 1985 .

[5]  Tosio Kato Perturbation of Continuous Spectra by Trace Class Operators , 1957 .

[6]  Tosio Kato Growth properties of solutions of the reduced wave equation with a variable coefficient , 1959 .

[7]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[8]  J. Thijssen,et al.  Computational Physics , 1999 .

[9]  D. Herschbach,et al.  Hylleraas–Pekeris treatment of D‐dimensional two‐electron atoms , 1986 .

[10]  Tosio Kato,et al.  Wave operators and similarity for some non-selfadjoint operators , 1966 .

[11]  Pamela R. Woodruff,et al.  Measurements of partial cross sections and autoionization in the photoionization of helium to He/+//N = 2/ , 1982 .

[12]  E. Hylleraas Über die Elektronenterme des Wasserstoffmoleküls , 1931 .

[13]  Lindroth Calculation of doubly excited states of helium with a finite discrete spectrum. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[14]  Joachim Weidmann,et al.  The virial theorem and its application to the spectral theory of Schrödinger operators , 1967 .

[15]  The Two Electron Molecular Bond Revisited: From Bohr Orbits to Two-Center Orbitals , 2005, physics/0508177.

[16]  Edward Witten,et al.  Quarks, atoms, and the 1/N expansion , 1980 .

[17]  J. D. Louck,et al.  Generalized orbital angular momentum and the n-fold degenerate quantum-mechanical oscillator: Part I. The twofold degenerate oscillator , 1960 .

[18]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[19]  P. Atkins,et al.  Molecular Quantum Mechanics , 1970 .

[20]  S. Patil,et al.  Asymptotic Methods in Quantum Mechanics , 2000 .

[21]  Hans L. Cycon,et al.  Schrodinger Operators: With Application to Quantum Mechanics and Global Geometry , 1987 .

[22]  W. Heisenberg,et al.  Zur Quantentheorie der Molekeln , 1924 .

[23]  D. Herschbach,et al.  Pseudomolecular atoms: geometry of two-electron intrashell excited states , 1988 .

[24]  J. D. Louck Generalized orbital angular momentum and the n-fold degenerate quantum-mechanical oscillator . Part III. Radial integrals , 1960 .

[25]  O. Sǐnanoğlu,et al.  Comparison of doubly-excited helium energy levels, isoelectronic series, autoionization lifetimes, and group-theoretical configuration-mixing predictions with large-configuration-interaction calculations and experimental spectra , 1975 .

[26]  Jianxin Zhou,et al.  Boundary element methods , 1992, Computational mathematics and applications.

[27]  A. Temkin,et al.  Symmetric euler-angle decomposition of the two- electron fixed-nucleus problem. , 1964 .

[28]  Søren Fournais,et al.  Sharp Regularity Results for Coulombic Many-Electron Wave Functions , 2003, math-ph/0312060.

[29]  Æleen Frisch,et al.  Exploring chemistry with electronic structure methods , 1996 .

[30]  R. Madden,et al.  NEW AUTOIONIZING ATOMIC ENERGY LEVELS IN He, Ne, AND Ar , 1963 .

[31]  D. Herschbach Dimensional interpolation for two‐electron atoms , 1986 .

[32]  H. D. Morgan,et al.  Photoionization cross section of helium for photon energies 59--67 eV: The (sp,2n+) /sup 1/P/sup o/ Rydberg series of autoionizing resonances , 1984 .

[33]  K. Richter,et al.  The theory of two-electron atoms: between ground state and complete fragmentation , 2000 .

[34]  G. Jaffé Zur Theorie des Wasserstoffmolekülions , 1934 .

[35]  M. Gutzwiller,et al.  Moon-Earth-Sun: The oldest three-body problem , 1998 .

[36]  Bohr's 1913 molecular model revisited. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[37]  D. Herrick Degeneracies in energy levels of quantum systems of variable dimensionality , 1975 .

[38]  P. Rutter,et al.  Photoionisation studies of autoionising states of helium between 69 and 77 eV , 1989 .

[39]  J. Weidmann Linear Operators in Hilbert Spaces , 1980 .

[40]  Robert V. Kohn,et al.  First order interpolation inequalities with weights , 1984 .

[41]  Tosio Kato On the existence of solutions of the helium wave equation , 1951 .

[42]  D. Herschbach,et al.  New methods in quantum theory , 1996 .

[43]  E. Lieb,et al.  Analysis, Second edition , 2001 .

[44]  T. Shibuya,et al.  Molecular orbitals in momentum space , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[45]  Moochan B. Kim,et al.  Mathematical analysis of a Bohr atom model , 2006 .

[46]  Tosio Kato,et al.  Integration of the equation of evolution in a Banach space , 1953 .

[47]  Simple and surprisingly accurate approach to the chemical bond obtained from dimensional scaling. , 2005, Physical review letters.

[48]  B. Krassig,et al.  New determination of Beutler-Fano parameters for the 3s3p 1P1 resonance in helium , 1988 .

[49]  A Burgers,et al.  Highly doubly excited S states of the helium atom , 1995 .