Holey optical fibres: Fundamental properties and device applications

Abstract The presence of wavelength-scale holes in the transverse profile of a holey fibre can lead to novel optical properties that cannot be achieved in more conventional forms of optical fibre. Examples of such properties include broadband single-mode guidance, the extremes of fibre nonlinearity, from fibres providing tight mode confinement to those offering large mode areas, and a range of remarkable dispersive properties, including broadband flattened dispersion, anomalous dispersion below 1.3 μm, and large normal dispersion values at 1.55 μm. Fundamentals and recent progress are reviewed, ranging from design and fabrication through to applications and devices based on this emerging fibre type. To cite this article: T.M. Monro, D.J. Richardson, C. R. Physique 4 (2003).

[1]  Thomas Søndergaard,et al.  Waveguidance by the photonic bandgap effect in optical fibres , 1999 .

[2]  J. Arriaga,et al.  Anomalous dispersion in photonic crystal fiber , 2000, IEEE Photonics Technology Letters.

[3]  D J Richardson,et al.  Comparative study of large-mode holey and conventional fibers. , 2001, Optics letters.

[4]  Masaki Asobe,et al.  Nonlinear Optical Properties of Chalcogenide Glass Fibers and Their Application to All-Optical Switching , 1997 .

[5]  William J. Wadsworth,et al.  Yb3+-doped photonic crystal fibre laser , 2000 .

[6]  P. Petropoulos,et al.  Modelocked laser based on ytterbium doped holey fibre , 2001 .

[7]  S. Friberg,et al.  Nonlinear optical glasses for ultrafast optical switches , 1987 .

[8]  David J. Richardson,et al.  Chalcogenide holey fibres , 2000 .

[9]  P. Ohlen,et al.  Wavelength dependence and power requirements of a wavelength converter based on XPM in a dispersion-shifted optical fiber , 2000, IEEE Photonics Technology Letters.

[10]  T. Strasser,et al.  Grating resonances in air-silica microstructured optical fibers. , 1999, Optics letters.

[11]  D. Marcuse,et al.  Influence of curvature on the losses of doubly clad fibers. , 1982, Applied optics.

[12]  A. Bjarklev,et al.  Photonic Crystal Fibers: A New Class of Optical Waveguides , 1999 .

[13]  M. Ibsen,et al.  A holey fiber-based nonlinear thresholding device for optical CDMA receiver performance enhancement , 2002, IEEE Photonics Technology Letters.

[14]  Walter Belardi,et al.  Investigation of Brillouin effects in small-core holey optical fiber: lasing and scattering. , 2002, Optics letters.

[15]  D J Richardson,et al.  2R-regenerative all-optical switch based on a highly nonlinear holey fiber. , 2001, Optics letters.

[16]  R. McPhedran,et al.  Symmetry and degeneracy in microstructured optical fibers. , 2001, Optics letters.

[17]  Knight,et al.  Single-Mode Photonic Band Gap Guidance of Light in Air. , 1999, Science.

[18]  P. Russell,et al.  Endlessly single-mode photonic crystal fiber. , 1997, Optics letters.

[19]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[20]  Dominique Pagnoux,et al.  Complete Analysis of the Characteristics of Propagation into Photonic Crystal Fibers, by the Finite Element Method , 2000 .

[21]  D J Richardson,et al.  Raman effects in a highly nonlinear holey fiber: amplification and modulation. , 2002, Optics letters.

[22]  Leon Poladian,et al.  Fourier decomposition algorithm for leaky modes of fibres with arbitrary geometry. , 2002, Optics express.

[23]  D. M. Atkin,et al.  Full 2-D photonic bandgaps in silica/air structures , 1995 .

[24]  D. Richardson,et al.  Nonlinearity in holey optical fibers: measurement and future opportunities. , 1999, Optics letters.

[25]  M. Nakazawa,et al.  Random evolution and coherence degradation of a high-order optical soliton train in the presence of noise. , 1999, Optics letters.

[26]  K. Inoue,et al.  Wavelength conversion experiment using fiber four-wave mixing , 1992, IEEE Photonics Technology Letters.

[27]  Jonathan Knight,et al.  Large mode area photonic crystal fibre , 1998 .

[28]  Anders Bjarklev,et al.  Macro-bending loss properties of photonic crystal fibre , 2001 .

[29]  Broad-band second-harmonic generation in holey optical fibers , 2001, IEEE Photonics Technology Letters.

[30]  Philip St. J. Russell,et al.  Distribution of spontaneous emission from an Er/sup 3+/-doped photonic crystal fiber , 1999 .

[31]  Simon Fleming,et al.  Microstructured polymer optical fibre. , 2001 .

[32]  D. Richardson,et al.  Modeling large air fraction holey optical fibers , 2000, Journal of Lightwave Technology.

[33]  L. Mollenauer,et al.  Discovery of the soliton self-frequency shift. , 1986, Optics letters.

[34]  David J. Richardson,et al.  A tunable, femtosecond pulse source operating in the range 1.06-1.33 microns based on an Yb doped holey fiber amplifier , 2001, CLEO 2001.

[35]  J. Price,et al.  Cladding pumped Ytterbium-doped fiber laser with holey inner and outer cladding. , 2001, Optics express.

[36]  David J. Richardson,et al.  Holey optical fibers: an efficient modal model , 1999 .

[37]  A. Stentz,et al.  Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm , 2000 .

[38]  Richard V. Penty,et al.  Constant output power control in an optical crosspoint switch allowing enhanced noise performance operation , 2001, Proceedings 27th European Conference on Optical Communication (Cat. No.01TH8551).

[39]  M. Nishimura,et al.  Silica-based functional fibers with enhanced nonlinearity and their applications , 1999 .

[40]  R. McPhedran,et al.  Confinement losses in microstructured optical fibers. , 2001, Optics letters.

[41]  Shu Namiki,et al.  Broadband four-wave mixing generation in short optical fibres , 2000 .

[42]  F. Wise,et al.  Nonlinear propagation of high-power, sub-100-fs pulses near the zero-dispersion wavelength of an optical fiber. , 1994, Optics letters.

[43]  K. Wong,et al.  Ultrawide tunable Er soliton fiber laser amplified in Yb-doped fiber. , 1999, Optics letters.

[44]  J. Knight,et al.  Dispersion compensation using single-material fibers , 1999, IEEE Photonics Technology Letters.

[45]  D. M. Atkin,et al.  All-silica single-mode optical fiber with photonic crystal cladding. , 1996, Optics letters.

[46]  D J Richardson,et al.  Holey fibers with random cladding distributions. , 2000, Optics letters.

[47]  David J. Richardson,et al.  Extruded singlemode non-silica glass holey optical fibres , 2002 .